目标。在体内开发和体内演示具有数字地址的螺纹式无线植入神经刺激器。方法。这些设备通过其两个电极执行,通过表皮纺织电极传导通过体积传导传递的无害高频电流爆发。通过避免需要大型组件获得电能,这种方法允许开发薄设备,这些设备可以通过最小的入侵程序(例如注射)肌肉内植入。为了符合电气安全标准,该方法需要在植入电极之间按毫米或几厘米的少量订单或几厘米的最小距离。此外,设备必须对组织造成最小的机械损害,避免脱位并足以长期植入。考虑到这些要求,植入物被视为管状和柔性设备,在相对末端有两个电极,在中间部分,是一个藏有电子设备的密封金属胶囊。主要结果。The developed implants have a submillimetric diameter (0.97 mm diameter, 35 mm length) and consist of a microcircuit, which contains a single custom-developed integrated circuit, housed within a titanium capsule (0.7 mm diameter, 6.5 mm length), and two platinum- iridium coils that form two electrodes (3 mm length) located at opposite ends of a silicone body.这些神经肌肉刺激器是可寻址的,可以建立一个可以独立控制的微刺激器网络。意义。通过在麻醉兔子的后肢中注入其中一些,并诱发受控和独立的收缩,证明了它们的操作。这些结果表明,通过使用适用于慢性电子植入物建立的制造技术和材料,制造类似螺纹的无线神经肌肉刺激器的可行性。这为通过此类无线设备的密集网络形成的高级运动神经预测的临床开发铺平了道路。
氢(H 2)被广泛认为对工业和运输的脱碳至关重要。由可再生电力提供动力的水电解(通常称为绿色H 2)可用于产生H 2,二氧化碳排放率低。在此,我们分析了在三种不同的假设未来需求方案下与绿色H 2产量相关的关键矿物质和能源需求,范围从100 - 1,000 MTPA H 2。在每种情况下,我们计算建造水电器所需的关键矿物质需求(即,电极和电解质),并建造专用或其他可再生电源(即,风和太阳能)为电解器供电。我们的分析表明,使用铂金属金属和稀土元素的缩放电解仪和可再生能源技术可能会面临供应限制。特定数量的灯笼,Yttrium或虹膜需要增加电解剂的能力,甚至需要更多的新近矿物质,硅,锌,钼,铝和铜,以构建专用的可再生电力源。我们发现,根据某些能源过渡模型,将绿色H 2产量满足预计的净零目标将需要约24,000 TWH的专用可再生能源产生,这大约是2050年在2050年网格上的总量。总而言之,关键的矿物约束可能会阻碍绿色H 2的缩放,以满足全球净零排放目标,从而激发了对生成H 2的替代性,低排放方法进行研究和开发的需求。
质量实验室使用埃及阿拉伯共和国的国家质量主要标准调查所有测量质量设备的可追溯性。公斤复制品 No.58,由铂铱合金制成。该公斤用于将可追溯性转移到共和国内外的其他质量。实验室采用建立其标准可追溯性的政策,追溯到其自己的主要标准,避免外部校准。质量实验室。不同等级的质量校准,从 E 1 到 M 3,范围从 1 毫克到 1000 千克。校准天平、微量天平、卡车称重秤、沥青和混凝土修补设备,最高可达 200 吨。密度实验室。密度实验室维护固体和液体密度的一级标准(1 千克单晶硅球)。使用一套系统测量质量密度,范围从 1 克到 50 千克。使用自动静水称重系统自动校准范围从 500 千克/立方米到 3000 千克/立方米的密度比重计,同时校准压力实验室的数字密度计。实验室验证压力单位的国家一级标准,并将可追溯性转移到其他压力设备。压力实验室维护力平衡活塞计 FPG,用于高达 15 kPa 的表压、差压和绝对压力。带有活塞缸组的气体压力平衡,用于绝对压力和表压,最高 40 MPa。带有活塞缸组的油压平衡器,表压最高可达 500 MPa。
DGAC:墨西哥民用航空总局(墨西哥认证机构) EASA:欧洲航空安全局 EBITDA:息税折旧摊销前利润 ECAA:埃及民航局 EFB:电子飞行包 ERTC:员工保留税收抵免 ESG:环境、社会、治理 FAA:美国联邦航空管理局 FANS:未来空中导航系统 FDR:飞行数据记录器 FlightLink TM:铱星数据单元 GAAP:公认会计原则 GAMECO:广州飞机维修工程有限公司 HASCAP:受影响严重行业信贷可用性计划 IATA:国际航空运输协会 ICAO:国际民用航空组织 IFRS:国际财务报告准则 MD&A:管理讨论与分析 MRO:维护、修理和大修 MTBF:平均故障间隔时间 OEM:原始设备制造商 PAC:松下航空电子株式会社 PPP:薪资保护计划 PWS:松下气象解决方案 QAR:快速访问记录器 QTD:本季度至今 R&D:研究与开发 RPK:收入客公里 SaaS:软件即服务 SADI:战略航空航天和国防计划 SAAU:乌克兰国家航空局 STC:补充型号合格证 TAMDAR TM:对流层机载气象数据报告 TCCA:加拿大运输部民航 TCFD:气候相关披露工作组 WINN:西方创新
摘要:氧气进化反应(OER)为许多电催化功率对X过程提供了质子,例如从水或CO 2中产生绿色氢或甲醇。含氧氧化物(IOHS)是该反应的出色催化剂,因为它们在酸性电解质中的活性和稳定性之间取得了独特的平衡。在IOHS中,此平衡随原子结构而变化。 虽然无定形IOH的表现最佳,但它们是最不稳定的。 相反,它们的结晶对应物是正确的。 这些规则用于减少稀缺的IOH催化剂的负载并保留性能。 但是,尚不完全了解活动和稳定性在原子水平上如何相关,从而阻碍了理性设计。 在此,我们提供了简单的设计规则(图12),这些规则源自本研究中的文献和各种IOH。 我们选择了晶体IROOH纳米片作为我们的铅材料,因为它们提供了出色的催化剂利用和可预测的结构。 我们发现,iRooh在超过无定形IOH的活性的同时表示晶体IOH的化学稳定性。 其致密的锥体三价氧(μ3Δ-O)的密集键合网络提供了结构完整性,同时允许可逆还原到电子间隙状态,从而减少了还原电位的破坏性效果。 反应性起源于具有自由基特征的协调不饱和边缘位点,即μ1-o oxyls。 我们希望这些规则将激发未来催化剂的原子设计策略。 ■简介在IOHS中,此平衡随原子结构而变化。虽然无定形IOH的表现最佳,但它们是最不稳定的。相反,它们的结晶对应物是正确的。这些规则用于减少稀缺的IOH催化剂的负载并保留性能。但是,尚不完全了解活动和稳定性在原子水平上如何相关,从而阻碍了理性设计。在此,我们提供了简单的设计规则(图12),这些规则源自本研究中的文献和各种IOH。我们选择了晶体IROOH纳米片作为我们的铅材料,因为它们提供了出色的催化剂利用和可预测的结构。我们发现,iRooh在超过无定形IOH的活性的同时表示晶体IOH的化学稳定性。其致密的锥体三价氧(μ3Δ-O)的密集键合网络提供了结构完整性,同时允许可逆还原到电子间隙状态,从而减少了还原电位的破坏性效果。反应性起源于具有自由基特征的协调不饱和边缘位点,即μ1-o oxyls。我们希望这些规则将激发未来催化剂的原子设计策略。■简介通过与其他IOH和文献进行比较,我们概括了我们的发现并综合了一组简单的规则,这些规则可以预测原子模型中IOH的稳定性和反应性。
a)应向信件解决的作者:jianwangphysics@pku.edu.cn抽象硬点接触光谱和扫描探针显微镜/光谱是研究具有强大可扩展性的材料的强大技术。为了支持这些研究,需要具有各种物理和化学特性的技巧。为了确保实验结果的可重复性,应标准化尖端的制造,并应设置可控且方便的系统。在这里,提出了一种用于制造各种技巧的系统方法,涉及电化学蚀刻反应。反应参数分为四类:解决方案,电源,浸入深度和中断。设计和构建了蚀刻系统,以便可以准确控制这些参数。使用该系统,探索和标准化了铜,银,金,铂/虹膜合金,钨,铅,铅,铁,铁,镍,钴和薄金的蚀刻参数。在这些技巧中,探索并标准化了白银和尼伯族的新食谱。进行光学和扫描电子显微镜,以表征尖锐的针头。用蚀刻的银色尖端进行了相关的点接触实验,以确认被制成尖端的适用性。I.引言是研究超导体的强大工具,点接触光谱(PC)技术已成功地应用于对具有各种特性的材料的研究。1-8在实验中,PC被归类为软点接触和硬点接触。7-13前者通常使用银色涂料形成点接触。硬点接触中的技巧用法使PC具有更多的可能性。传统上,通过PCS,可以方便地测量超导体的超导差距和配对对称性,以及通过PCS进行的有关准二粒激发(例如镁质和声子)的能量信息。1-5近年来,在硬点接触实验中发现了尖端诱导的或增强的超导性,其机制归因于局部掺杂效应,局部高压效应和对边界的界面效应。
1 简介 质量单位千克是国际单位制 (SI) 中唯一的基本单位,仍然以实物来定义。其定义是: “质量”和“重量”的区别在于,质量是物体所含物质的量度,而重量是作用于物体的引力。然而,在交易过程中,重量通常被认为与质量相同。 千克的国际原器保存在位于巴黎塞夫勒的国际度量衡局 BIPM。它由 90% 的铂和 10% 的铱合金制成,呈圆柱体,高 39 毫米,直径 39 毫米。它存储在专门设计的三重钟罩中,在常压下运行。约有 60 个国家拥有 BIPM 千克 (K) 的铂铱合金复制品,其值直接由 K 确定。英国国家物理实验室 (NPL) 拥有英国复制品 (18 号),称为国家千克原型,或简称为 18 号千克,是英国整个质量标度的基础。NPL 参与了广泛的国际比对,以确保英国的测量结果与世界其他地方的测量结果相同。过去,一个国家的组织不接受除本国以外的任何 NMI 的可追溯性,这存在一些问题。随着通过 M 实现国际等效性的结构化方法的出现,这种情况已得到解决
由于廉价现成的无线电硬件的可用性增加,对卫星地面系统的信号欺骗和重播攻击变得比以往任何时候都更容易获得。对于旧系统来说,这尤其是一个问题,其中许多系统没有提供加密安全性,并且无法修补以支持新的安全措施。因此,在本文中,我们在卫星系统的背景下探索无线电发射机指纹。我们介绍了SATIQ系统,提出了新的技术,以使用发射器硬件的特征来验证传输,这些硬件在下行的无线电信号上表示为损伤。我们以高样本速率指纹识别的方式观察,使设备的指纹难以伪造而没有类似的高样本速率传输硬件,从而增加了欺骗和重播攻击所需的预算。我们还通过高水平的大气噪声和多径散射来检查这种方法的难度,并分析了该问题的潜在解决方案。我们专注于虹膜卫星星座,为此,我们以25 ms / s的采样速率收集了1 705 202条消息。我们使用这些数据来训练由自动编码器与暹罗神经网络相结合的指纹模型,从而使模型能够学习保留识别信息的消息头的有效编码。我们通过使用软件定义的无线电重新启动消息来证明指纹系统的鲁棒性,达到0的错误率为0。120,ROC AUC为0。946。最后,我们通过引入培训和测试数据之间的时间差距,及其可扩展性来分析其稳定性,并通过引入以前从未有过的新变送器来分析其稳定性。我们得出的结论是,我们的技术对于构建随着时间的推移稳定的指纹系统非常有用,可以与新的发射机无需再培训即可立即使用,并通过提高所需的攻击预算来提供稳健性,以防止欺骗和重播攻击。
原子 原子元素 符号 数量 质量 锕 Ac 89 (227) 铝 Al 13 26.9815386 镅 Am 95 (243) 锑 Sb 51 121.760 氩 Ar 18 39.948 砷 As 33 74.92160 砹 At 85 (210) 钡 Ba 56 137.327 锫 Bk 97 (247) 铍 Be 4 9.012182 铋 Bi 83 208.98040 硼 Bh 107 (270) 硼 B 5 10.81 溴 Br 35 79.904 镉 Cd 48 112.411 钙 Ca 20 40.078 锎 Cf 98 (251) 碳 C 6 12.011 铈 Ce 58 140.116 铯 Cs 55 132.90545 氯 Cl 17 35.45 铬 Cr 24 51.9961 钴 Co 27 58.933195 铯 Cn 112 (285) 铜 Cu 29 63.546 锔 Cm 96 (247) 达姆斯塔德 Ds 110 (281) 铍 Db 105 (268) 镝 Dy 66 162.500 镝 Es 99 (252) 铒 Er 68 167.259 铕 Eu 63 151.964 镄 Fm 100 [257] 铍Fl 114 (289) 氟 F 9 18.9984032 钫 Fr 87 (223) 钆 Gd 64 157.25 镓 Ga 31 69.723 锗 Ge 32 72.63 金 Au 79 196.966569 铪 Hf 72 178.49 钇 Hs 108 (277) 氦 He 2 4.002602 钬 Ho 67 164.93032 氢 H 1 1.008 铟 In 49 114.818 碘 I 53 126.90447 铱 Ir 77 192.217 铁 Fe 26 55.845 氪 Kr 36 83.798镧 La 57 138.90547 劳伦斯 Lr 103 (262) 铅 Pb 82 207.2 锂 Li 3 6.94 利弗莫伦 Lv 116 (293) 镥 Lu 71 174.9668 镁 Mg 12 24.3050 锰 Mn 25 54.938045 Meitnerium Mt 109 (276)
由于廉价现成的无线电硬件的可用性增加,对卫星地面系统的信号欺骗和重播攻击变得比以往任何时候都更容易获得。对于旧系统来说,这尤其是一个问题,其中许多系统没有提供加密安全性,并且无法修补以支持新的安全措施。因此,在本文中,我们在卫星系统的背景下探索无线电发射机指纹。我们介绍了SATIQ系统,提出了新的技术,以使用发射器硬件的特征来验证传输,这些硬件在下行的无线电信号上表示为损伤。我们以高样本速率指纹识别的方式观察,使设备的指纹难以伪造而没有类似的高样本速率传输硬件,从而增加了欺骗和重播攻击所需的预算。我们还通过高水平的大气噪声和多径散射来检查这种方法的难度,并分析了该问题的潜在解决方案。我们专注于虹膜卫星星座,为此,我们以25 ms / s的采样速率收集了1 705 202条消息。我们使用这些数据来训练由自动编码器与暹罗神经网络相结合的指纹模型,从而使模型能够学习保留识别信息的消息头的有效编码。我们通过使用软件定义的无线电重新启动消息来证明指纹系统的鲁棒性,达到0的错误率为0。120,ROC AUC为0。946。最后,我们通过引入培训和测试数据之间的时间差距,及其可扩展性来分析其稳定性,并通过引入以前从未有过的新变送器来分析其稳定性。我们得出的结论是,我们的技术对于构建随着时间的推移稳定的指纹系统非常有用,可以与新的发射机无需再培训即可立即使用,并通过提高所需的攻击预算来提供稳健性,以防止欺骗和重播攻击。