Electronica, Automatica”,布加勒斯特,27,3,页 107-110,(1983 年) Rns - CNCSIS 认可的全国发行的专业杂志。 Rno——其他在全国发行的专业杂志。 VisI - 在国内外组织的公认的国际科学事件卷,已编入 ISI 索引 VisB - 在国内外组织的公认的国际科学事件卷,已编入该领域的国际数据库 - BDI 索引,该数据库根据绩效标准执行选择出版物的过程。 Vi- 在国内外组织的公认的国际科学活动的卷宗; Vn——国家科学事件卷。 Vi:国内外公认的国际科学事件刊物上发表的文章列表(17 个 ISI 索引)Vi1。 VA Loiko、A. Konkolovich、A. Minskievich、D. Manaila-Maximean、O. Danila、V. Circu、A. Barar,“掺杂碳纳米管的聚合物分散液晶膜的光透射”,第十一届国际科学会议“凝聚态介质中的富勒烯和纳米结构”,2020 年 11 月 24-26 日,白俄罗斯明斯克,卷 proc。 P.110,ISBN 978-985-7138-17-3,俄文。 Vi2。 Doina Mănăilă-Maximean、Paul Ganea、Valery A. Loiko、Alexander V. Konkolovich、Viorel Cîrcu、Octavian Danila、Ana Bărar,“掺杂纳米粒子的聚合物分散液晶:电和电光特性”(受邀),SPIE 会议 ATOM-N,罗马尼亚康斯坦察,2020 年 8 月 20 日至 23 日,会议录第 11718 卷,光电子学、微电子学和纳米技术的高级主题 X; 117182R (2020) DOI:10.1117/12.2572104 Vi3。 Theodora A. Ilincă、Doina Manaila-Maximean、Paul C. Ganea、Iuliana Pasuk、Viorel Cîrcu,“基于 4-吡啶酮配体的新型镧系元素介晶的极化发射和介电研究”,SPIE 会议 ATOM-N,罗马尼亚康斯坦察,2020 年 8 月 20 日至 23 日会议记录第 11718 卷,光电子学、微电子学和纳米技术的高级主题 X; 117182U (2020),DOI:10.1117/12.2572109 Vi4。 Ligia Frunza、V. Florin Cotorobai、Monica Enculescu、Irina Zgura、C. Paul Ganea、Maria Birzu、Doina Mănăilă-Maximean,“罗丹明 B 溶液在羊毛基质上的吸附、芯吸行为和光降解测试”,SPIE 会议 ATOM-N,罗马尼亚康斯坦察,2020 年 8 月 20 日至 23 日,会议录第 11718 卷,光电子学、微电子学和纳米技术的高级主题 X; 117182W(2020),DOI:10.1117/12.2572130 Vi5。 A. Bărar、O. Dănilă、D. Mănăilă-Maximean、VA Loiko,2019 年 9 月。 “通过偏振平面旋转控制可调液晶/超材料结构中的主动光谱吸收”。在纳米技术和生物医学工程国际会议上(第 299-303 页)。 Springer,Cham.,DOI:10.1007/978-3-030-31866-6_58,WOS:000552314200058 Vi6。 D. Manaila Maximean、A. Barar、CP Ganea、PLAlmeida, O. Dănilă,2019 年 1 月。“液晶羟丙基纤维素网络复合材料的阻抗谱和电光切换时间”。光电子学、微电子学和纳米技术高级主题 IX(第 10977 卷,第 109770P 页)。国际光学和光子学学会。(6 页),WOS:000458717900024
LB001用超pH敏感的纳米颗粒平台封装IL-12可提高耐受性,并促进小鼠的抗肿瘤反应。Qingtai Su,1 Stephen Gutowski,1 Irina Kalashnikova,1 Austin Burcham,1 Bhargavi Allu,1 Zirong Chen,1 Zhichen Sun,2 Jinming Gao,2 Ruolan Han,2 Ruolan Han,1 Jason B. Miller,1 Tian Zhao 1。1 OnConano Medicine,德克萨斯州达拉斯; 2德克萨斯大学西南医学中心,德克萨斯州达拉斯。背景:白介素12是一种有效的促炎细胞因子,可增殖和激活T细胞,NK细胞并区分Th1细胞。IL-12翻译用于癌症治疗的人因细胞因子释放综合征而受到致命毒性的阻碍,目前尚无认可的IL-12疗法。为了在保持效力的同时最大程度地减少严重的毒性,我们已经开发了板载,这是一种超ph敏感的纳米颗粒平台,用于掩盖和靶向有效载荷到酸性肿瘤微环境。在I和II期临床试验中,Pegsitacianine在多种肿瘤类型中的高肿瘤特异性证明了板载的临床可行性。在此,我们报告了使用板载的封装和掩盖IL-12向肿瘤小鼠的递送,表明耐受性,抗肿瘤功效和临床翻译的潜力显着提高。方法:在板载纳米颗粒中配制了与FC融合的小鼠IL-12。粒子特性,并通过体外筛选确定铅制剂,以确定记者和ELISA分析中的pH介导的生物活性以及小鼠血浆中的稳定性。在均匀分布的稳定颗粒(D H <50nm)中。体内研究,以比较未包裹的IL-12与板上/IL-12公式的活性。PD反应,同时进行临床化学以评估肝脏和肾功能。与未包裹的IL-12相比,在带有同性MC38结直肠癌肿瘤的小鼠中,在板上/IL-12的抗肿瘤功效中进行了抗肿瘤功效。结果:车载/IL-12配方表现出较高的封装效率(> 85%),药物加载高达20%。pH特异性有效载荷释放,在酸激活和完整的配方之间使用> 100倍的激活窗口。在小鼠等离子体中孵育后,铅载板配方显示通过ELISA测定法稳定IL-12封装。与未包裹的IL-12相比,体内/板上/IL-12的配方在体内/IL-12配方表现出显着提高的耐受性。与以1 µg/剂量未包裹的蛋白质相比,摄入5µg/剂量时,板上/IL-12的蛋白质显示体重减轻(<2%vs 13%),肝损伤标记降低了AST和ALT。分析全身细胞因子(IFNγ,IL-6,IL-10,TNFα等)的板载配方水平明显较低,包括血浆IFNγ水平降低> 1,000倍,这是由IL-12信号直接诱导的。板/IL-12配方还表明,在含有95%TGI和完整响应者的MC38肿瘤动物中,抗肿瘤功效很强。 结论:板载平台显示出掩盖毒性和促进IL-12蛋白进行癌症治疗的肿瘤特异性递送的潜力。板/IL-12配方还表明,在含有95%TGI和完整响应者的MC38肿瘤动物中,抗肿瘤功效很强。结论:板载平台显示出掩盖毒性和促进IL-12蛋白进行癌症治疗的肿瘤特异性递送的潜力。lb002靶向嵌合体的蛋白水解的细胞外囊泡负载,用于靶向治疗。Nina Erwin,Xiaoshu Pan,Nikee Awasthee,Yufeng Xiao,Guangrong Zheng,Daiqing Liao,Mei He。 佛罗里达州佛罗里达大学的佛罗里达大学。 乳腺癌是一个重大的公共卫生问题,仍然是女性癌症死亡的第二大原因。 当前的乳腺癌治疗策略会导致严重的副作用和不足的功效。 例如,化学疗法,放射疗法和激素受体和HER2靶向疗法可以分别导致健康的细胞损伤,部分,延迟效应和心脏毒性和获得的免疫耐药性。 新兴的替代靶向治疗方法是蛋白水解Nina Erwin,Xiaoshu Pan,Nikee Awasthee,Yufeng Xiao,Guangrong Zheng,Daiqing Liao,Mei He。佛罗里达州佛罗里达大学的佛罗里达大学。 乳腺癌是一个重大的公共卫生问题,仍然是女性癌症死亡的第二大原因。 当前的乳腺癌治疗策略会导致严重的副作用和不足的功效。 例如,化学疗法,放射疗法和激素受体和HER2靶向疗法可以分别导致健康的细胞损伤,部分,延迟效应和心脏毒性和获得的免疫耐药性。 新兴的替代靶向治疗方法是蛋白水解佛罗里达州佛罗里达大学的佛罗里达大学。乳腺癌是一个重大的公共卫生问题,仍然是女性癌症死亡的第二大原因。当前的乳腺癌治疗策略会导致严重的副作用和不足的功效。例如,化学疗法,放射疗法和激素受体和HER2靶向疗法可以分别导致健康的细胞损伤,部分,延迟效应和心脏毒性和获得的免疫耐药性。新兴的替代靶向治疗方法是蛋白水解
[4] Linda Evans、Fred Hardtke、Emily Corbin 和 Wouter Claes。2020 年。伪装的变色龙:在埃及 el-Hosh 遗址的新发现。《考古学和人类学》12,8 (2020),1–9。[5] 欧洲宠物食品工业联合会 (FEDIAF)。2020 年。事实与数据 2020。https://www.fediaf.org/images/FEDIAF_Facts_and_Figures_2020.pdf [6] Martin S Fischer、Cornelia Krause 和 Karin E Lilje。2010 年。变色龙运动能力的进化,或如何成为树栖爬行动物。《动物学》113,2 (2010),67–74。[7] Olivier Friard 和 Marco Gamba。 2016. BORIS:一款免费、多功能的开源事件记录软件,可用于视频/音频编码和实时观察。《生态学与进化方法》7,11(2016),1325–1330。[8] Klaus Greff、Rupesh K Srivastava、Jan Koutník、Bas R Steunebrink 和 Jürgen Schmidhuber。2016. LSTM:搜索空间漫游。《IEEE 神经网络与学习系统汇刊》28,10(2016),2222–2232。[9] Anthony Herrel、Krystal A Tolley、G John Measey、Jessica M da Silva、Daniel F Potgieter、Elodie Boller、Renaud Boistel 和 Bieke Vanhooydonck。2013. 缓慢但坚韧:变色龙奔跑和抓握能力分析。 《实验生物学杂志》216,6(2013),1025–1030。[10] Timothy E Higham 和 Bruce C Jayne。2004。蜥蜴在斜坡和栖木上的运动:树栖专化者和陆栖通才者的后肢运动学。《实验生物学杂志》207,2(2004),233–248。[11] Mayank Kabra、Alice A Robie、Marta Rivera-Alba、Steven Branson 和 Kristin Branson。2013。JAABA:用于自动注释动物行为的交互式机器学习。《自然方法》10,1(2013),64–67。 [12] Mary P Klinck、Margaret E Gruen、Jérôme RE del Castillo、Martin Guillot、Andrea E Thomson、Mark Heit、B Duncan X Lascelles 和 Eric Troncy。2018 年。通过随机临床试验,开发了供看护人/主人 MI-CAT (C) 使用的蒙特利尔猫关节炎测试工具,并对其初步效度和信度进行了评估。《应用动物行为科学》200 期 (2018),第 96-105 页。[13] JB Losos、BM Walton 和 AF Bennett。1993 年。《肯尼亚变色龙的冲刺能力与粘着能力之间的权衡》。《功能生态学》(1993),第 281-286 页。[14] Tom Menaker、Anna Zamansky、Dirk van der Linden、Dmitry Kaplun、Aleksandr Sinitica、Sabrina Karl 和 Ludwig Huber。 2020 年。面向数据驱动的动物行为模式自动分析方法。第七届动物-计算机交互国际会议论文集。1-6。[15] Nikola Mijailovic、Marijana Gavrilovic、Stefan Rafajlovic、M Ðuric-Jovicic 和 D Popovic。2009 年。从加速度和地面反作用力识别步态阶段:神经网络的应用。Telfor 杂志 1, 1(2009 年),34-36。[16] Hung Nguyen、Sarah J Maclagan、Tu Dinh Nguyen、Thin Nguyen、Paul Flemons、Kylie Andrews、Euan G Ritchie 和 Dinh Phung。2017 年。使用深度卷积神经网络进行动物识别和鉴别,用于自动野生动物监测。2017 年 IEEE 数据科学与高级分析国际会议 (DSAA)。IEEE,40–49。[17] Matthias Ott。2001 年。变色龙有独立的眼球运动,但在扫视猎物追踪过程中双眼会同步。实验脑研究 139,2(2001 年),173–179。[18] Veronica Panadeiro、Alvaro Rodriguez、Jason Henry、Donald Wlodkowic 和 Magnus Andersson。2021 年。28 款免费动物追踪软件应用程序回顾:当前功能和局限性。实验室动物(2021 年),1–9。[19] Anika Patel、Lisa Cheung、Nandini Khatod、Irina Matijosaitiene、Alejandro Arteaga 和 Joseph W Gilkey。 2020. 揭示未知:使用深度学习实时识别加拉帕戈斯蛇类。动物 10, 5 (2020), 806。[20] Zachary T Pennington、Zhe Dong、Yu Feng、Lauren M Vetere、Lucia Page-Harley、Tristan Shuman 和 Denise J Cai。2019. ezTrack:用于研究动物行为的开源视频分析流程。科学报告 9, 1 (2019), 1–11。[21] Talmo D Pereira、Diego E Aldarondo、Lindsay Willmore、Mikhail Kislin、Samuel SH Wang、Mala Murthy 和 Joshua W Shaevitz。2019. 使用深度神经网络快速估计动物姿势。自然方法 16, 1 (2019), 117–125。[22] Jane A Peterson。 1984. 蜥蜴(爬行动物:蜥蜴)的运动方式,特别是前肢。《动物学杂志》202,1(1984),1-42。[23] Nagifa Ilma Progga、Noortaz Rezoana、Mohammad Shahadat Hossain、Raihan Ul Islam 和 Karl Andersson。2021. 基于 CNN 的毒蛇和无毒蛇分类模型。在国际应用智能与信息学会议上。Springer,216-231。[24] Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi。2016. 您只需看一次:统一的实时物体检测。在 IEEE 计算机视觉与模式识别会议论文集上。779-788。 [25] Karl Patterson Schmidt、Robert F Inger 和 Roy Pinney。1957 年。世界现存爬行动物。纽约花园城汉诺威大厦。[26] Martin Stevens 和 Graeme D Ruxton。2019 年。行为在动物伪装中的关键作用。生物学评论 94, 1 (2019),116–134。[27] Atsushi Yamazaki、Kazuya Edamura、Koji Tanegashima、Yuma Tomo、Makoto Yamamoto、Hidehiro Hirao、Mamiko Seki 和 Kazushi Asano。2020 年。一种新型活动监测器在评估猫的身体活动和睡眠质量方面的实用性。Plos one 15, 7 (2020),e0236795。实验动物(2021),1-9。 [19] Anika Patel、Lisa Cheung、Nandini Khatod、Irina Matijosaitiene、Alejandro Arteaga 和 Joseph W Gilkey。 2020。揭示未知:利用深度学习实时识别加拉帕戈斯蛇种。动物 10, 5 (2020), 806。 [20] Zachary T Pennington、Zhe Dong、Yu Feng、Lauren M Vetere、Lucia Page-Harley、Tristan S human 和 Denise J Cai。 2019. ezTrack:用于研究动物行为的开源视频分析管道。科学报告 9、1 (2019)、1-11。 [21] 塔尔莫·D·佩雷拉、迭戈·E·阿尔达隆多、林赛·威尔莫尔、米哈伊尔·吉斯林、塞缪尔·SH·王、马拉·穆尔蒂和约书亚·W·沙维茨。 2019. 使用深度神经网络快速估计动物姿势。《自然方法》16,1(2019),117–125。[22] Jane A Peterson。1984. 蜥蜴(爬行动物:蜥蜴)的运动方式,特别是前肢。《动物学杂志》202,1(1984),1–42。[23] Nagifa Ilma Progga、Noortaz Rezoana、Mohammad Shahadat Hossain、Raihan Ul Islam 和 Karl Andersson。2021. 基于 CNN 的毒蛇和无毒蛇分类模型。在国际应用情报与信息学会议上。Springer,216–231。[24] Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi。 2016. 只需看一次:统一的实时物体检测。在 IEEE 计算机视觉与模式识别会议论文集上。779–788。[25] Karl Patterson Schmidt、Robert F Inger 和 Roy Pinney。1957. 世界上的现存爬行动物。纽约花园城汉诺威大厦。[26] Martin Stevens 和 Graeme D Ruxton。2019. 行为在动物伪装中的关键作用。生物学评论 94, 1 (2019),116–134。[27] Atsushi Yamazaki、Kazuya Edamura、Koji Tanegashima、Yuma Tomo、Makoto Yamamoto、Hidehiro Hirao、Mamiko Seki 和 Kazushi Asano。2020. 新型活动监测器在评估猫身体活动和睡眠质量中的实用性。 Plos one 15, 7 (2020), e0236795。实验动物(2021),1-9。 [19] Anika Patel、Lisa Cheung、Nandini Khatod、Irina Matijosaitiene、Alejandro Arteaga 和 Joseph W Gilkey。 2020。揭示未知:利用深度学习实时识别加拉帕戈斯蛇种。动物 10, 5 (2020), 806。 [20] Zachary T Pennington、Zhe Dong、Yu Feng、Lauren M Vetere、Lucia Page-Harley、Tristan S human 和 Denise J Cai。 2019. ezTrack:用于研究动物行为的开源视频分析管道。科学报告 9、1 (2019)、1-11。 [21] 塔尔莫·D·佩雷拉、迭戈·E·阿尔达隆多、林赛·威尔莫尔、米哈伊尔·吉斯林、塞缪尔·SH·王、马拉·穆尔蒂和约书亚·W·沙维茨。 2019. 使用深度神经网络快速估计动物姿势。《自然方法》16,1(2019),117–125。[22] Jane A Peterson。1984. 蜥蜴(爬行动物:蜥蜴)的运动方式,特别是前肢。《动物学杂志》202,1(1984),1–42。[23] Nagifa Ilma Progga、Noortaz Rezoana、Mohammad Shahadat Hossain、Raihan Ul Islam 和 Karl Andersson。2021. 基于 CNN 的毒蛇和无毒蛇分类模型。在国际应用情报与信息学会议上。Springer,216–231。[24] Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi。 2016. 只需看一次:统一的实时物体检测。在 IEEE 计算机视觉与模式识别会议论文集上。779–788。[25] Karl Patterson Schmidt、Robert F Inger 和 Roy Pinney。1957. 世界上的现存爬行动物。纽约花园城汉诺威大厦。[26] Martin Stevens 和 Graeme D Ruxton。2019. 行为在动物伪装中的关键作用。生物学评论 94, 1 (2019),116–134。[27] Atsushi Yamazaki、Kazuya Edamura、Koji Tanegashima、Yuma Tomo、Makoto Yamamoto、Hidehiro Hirao、Mamiko Seki 和 Kazushi Asano。2020. 新型活动监测器在评估猫身体活动和睡眠质量中的实用性。 Plos one 15, 7 (2020), e0236795。在国际应用情报与信息学会议上。Springer,216–231。[24] Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi。2016 年。你只需看一次:统一的实时物体检测。在 IEEE 计算机视觉和模式识别会议论文集上。779–788。[25] Karl Patterson Schmidt、Robert F Inger 和 Roy Pinney。1957 年。世界上现存的爬行动物。纽约花园城汉诺威大厦。[26] Martin Stevens 和 Graeme D Ruxton。2019 年。行为在动物伪装中的关键作用。生物学评论 94, 1 (2019),116–134。 [27] Atsushi Yamazaki、Kazuya Edamura、Koji Tanegashima、Yuma Tomo、Makoto Yamamoto、Hidehiro Hirao、Mamiko Seki 和 Kazushi Asano。2020 年。新型活动监测器在评估猫体力活动和睡眠质量方面的实用性。Plos one 15, 7 (2020),e0236795。在国际应用情报与信息学会议上。Springer,216–231。[24] Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi。2016 年。你只需看一次:统一的实时物体检测。在 IEEE 计算机视觉和模式识别会议论文集上。779–788。[25] Karl Patterson Schmidt、Robert F Inger 和 Roy Pinney。1957 年。世界上现存的爬行动物。纽约花园城汉诺威大厦。[26] Martin Stevens 和 Graeme D Ruxton。2019 年。行为在动物伪装中的关键作用。生物学评论 94, 1 (2019),116–134。 [27] Atsushi Yamazaki、Kazuya Edamura、Koji Tanegashima、Yuma Tomo、Makoto Yamamoto、Hidehiro Hirao、Mamiko Seki 和 Kazushi Asano。2020 年。新型活动监测器在评估猫体力活动和睡眠质量方面的实用性。Plos one 15, 7 (2020),e0236795。