Rainbow 团队的长期愿景是开发下一代基于传感器的机器人,使其能够与人类用户一起在复杂的非结构化环境中导航和/或交互。显然,“一起”一词在不同语境下可能具有非常不同的含义:例如,它可以指单纯的共存(机器人和人类在执行独立任务时共享一些空间)、人类意识(机器人需要了解人类的状态和意图,以便正确调整其行为)或实际合作(机器人和人类执行某些共同任务并需要协调其行为)。有人可能会认为这两个目标在某种程度上存在冲突,因为更高的机器人自主性应该意味着更少(或没有)人为干预。但是,我们相信我们的总体研究方向是有充分理由的,因为:(i)尽管机器人自主性取得了许多进步,但复杂和高级的基于认知的决策仍然遥不可及。在大多数涉及非结构化环境、不确定性和与物理世界的交互的应用中,人类的帮助仍然是必要的,而且很可能在未来几十年内都是如此。另一方面,机器人能够以极快的速度和精度自主执行特定和重复的任务,并能够在危险/偏远的环境中操作,而人类拥有无与伦比的认知能力和世界意识,使他们能够承担复杂而
摘要 — 我们报告了一项合作项目的结果,该项目研究了在飞机制造中部署人形机器人解决方案,用于轮式或轨道式机器人平台无法进入的一些装配操作。多接触规划和控制、双足行走、嵌入式 SLAM、全身多感官任务空间优化控制以及接触检测和安全方面的最新发展表明,考虑到这种大规模制造现场的特定要求,人形机器人可能是自动化的可行解决方案。主要挑战是将这些科学和技术进步集成到两个现有的人形平台中:位置控制的 HRP-4 和扭矩控制的 TORO。在空客圣纳泽尔工厂的 1:1 比例的 A350 机身前部模型内的支架组装操作中展示了这种集成工作。我们介绍并讨论了该项目取得的主要成果,并为未来的工作提供了建议。
飞行员通常认为,在航空母舰上着陆是最困难的训练之一,因为能见度条件、航空母舰动力学和狭小的着陆区使着陆变得复杂。根据能见度条件,可以使用几种接近航空母舰的方法,如 [1] 中所述。在我们的案例中,研究的轨迹包括在距离航空母舰 7.5 公里处开始下降,并将钩子放在所需的下降滑行上。为了确保着陆精度,不进行拉平。方法可以总结为保持下降率和迎角恒定,以保持飞机稳定性并防止失速。航空母舰上的着陆控制并不是一个新问题。它使用经典传感器(如雷达或相对 GPS [2])进行研究,这些传感器确定相对于参考轨迹的误差,并使用控制律对其进行校正,该控制律可以是最优的 [3] 或鲁棒的 [4]。[3] 中实现了一些航空母舰动力学预测模型,以改进控制。几十年来,出于认知和安全方面的考虑,人们一直在研究飞行员着陆时使用的视觉特征。目的是了解飞行员使用的特征并确定他们的敏感性[5],以便模拟人类反应并改善飞行员训练。[6] 介绍了用于在对准、进近和着陆期间控制飞机的视觉特征的相当完整的最新技术水平。例如,消失点和撞击点之间的距离允许飞行员跟随下降滑行。在[7]和[8]中,考虑到小角度假设,建立了相对姿势和视觉特征之间的联系。航母着陆主要在辅助系统范围内研究,该辅助系统处理光学着陆系统的可见性。海军飞行员降落在航母上的方法之一是控制飞机,以便将平视显示器 (HUD) 上的下滑道矢量聚焦到甲板上的三角形标记上,如图 1a 所示。另一种方法是将飞机的下滑道矢量与甲板上的三角形标记对齐,如图 1a 所示。
本书中的材料基于在第三届算法和平行VLSI架构的国家间研讨会上提出的作者贡献,该研讨会在卢文(Leuven)举行,Au-Gust 29-31,1994。该研讨会部分由Eurasip和Belgian NFWO(国家科学研究基金)赞助,并与IEEE BENELUX信号处理章节,IEEE BENELUX CIRCETITS和SYSSPEL CAPLER和法国INRIA,法国的IEEE BENELUX信号处理章节合作。这是1990年6月在法国的Pont - & - Mousson举行的两个同名讲习班[1]和法国Bonas,1991年6月[2]。所有这些研讨会都是在EC基础研究行动Nana和Nana2的框架内组织的,这是新的Real.Time Architectures的新型并行算法,由欧洲委员会的ESPRIT计划赞助。NANA承包商是IMEC,Leuven,Belgium(F. Catthoor),K.U。卢文,鲁汶,比利文(J. Vandewalle),恩斯尔,里昂,法国(Y。Robert),tu代代尔特,代尔夫特,代尔夫特,荷兰(P。Dewilde和E. Deprete),Irisa,Irisa,Rennes,Rennes,Rennes,Francance(P. Quinton)。这些项目中的目标是贡献适用于平行体系结构实现的算法,另一方面,设计方法和综合技术,这些方法和综合技术解决了从真实行为到系统的平行体系结构的设计轨迹。因此,这显然与研讨会和书籍的范围重叠。
奥斯陆奥斯陆Diakonhjemmet医院,挪威B诺门特,奥斯陆大学临床医学研究所,挪威C Promenta研究中心,奥斯陆心理学系,挪威大学,挪威D DIVE,挪威D Y型,爱丁堡大学爱丁堡大学,英国爱丁堡大学,英国Emrers,Isrirs,Ismrirs inirers inir iSerm inir iSerm umers inirir iSerm umers inirir iniriv emrimers iris inir iSerm iSrirs inir i imsr umerm umers inir iSerm i umermer umers 1228年,奥斯陆大学医院和临床医学研究所,奥斯陆大学心理健康与成瘾司,奥斯陆大学心理健康与成瘾司,挪威G大学,奥斯陆大学心理学系,挪威H俄勒冈大学,俄勒冈大学,尤金大学,或美国,美国,美国俄勒冈大学,诺威大学,美国神经发展局,纽约市纽约市纽约市纽约市纽约市劳斯莱斯大学的纽约市,斯德哥尔摩,瑞典 Institutet奥斯陆奥斯陆Diakonhjemmet医院,挪威B诺门特,奥斯陆大学临床医学研究所,挪威C Promenta研究中心,奥斯陆心理学系,挪威大学,挪威D DIVE,挪威D Y型,爱丁堡大学爱丁堡大学,英国爱丁堡大学,英国Emrers,Isrirs,Ismrirs inirers inir iSerm inir iSerm umers inirir iSerm umers inirir iniriv emrimers iris inir iSerm iSrirs inir i imsr umerm umers inir iSerm i umermer umers 1228年,奥斯陆大学医院和临床医学研究所,奥斯陆大学心理健康与成瘾司,奥斯陆大学心理健康与成瘾司,挪威G大学,奥斯陆大学心理学系,挪威H俄勒冈大学,俄勒冈大学,尤金大学,或美国,美国,美国俄勒冈大学,诺威大学,美国神经发展局,纽约市纽约市纽约市纽约市纽约市劳斯莱斯大学的纽约市,斯德哥尔摩,瑞典 Institutet奥斯陆奥斯陆Diakonhjemmet医院,挪威B诺门特,奥斯陆大学临床医学研究所,挪威C Promenta研究中心,奥斯陆心理学系,挪威大学,挪威D DIVE,挪威D Y型,爱丁堡大学爱丁堡大学,英国爱丁堡大学,英国Emrers,Isrirs,Ismrirs inirers inir iSerm inir iSerm umers inirir iSerm umers inirir iniriv emrimers iris inir iSerm iSrirs inir i imsr umerm umers inir iSerm i umermer umers 1228年,奥斯陆大学医院和临床医学研究所,奥斯陆大学心理健康与成瘾司,奥斯陆大学心理健康与成瘾司,挪威G大学,奥斯陆大学心理学系,挪威H俄勒冈大学,俄勒冈大学,尤金大学,或美国,美国,美国俄勒冈大学,诺威大学,美国神经发展局,纽约市纽约市纽约市纽约市纽约市劳斯莱斯大学的纽约市,斯德哥尔摩,瑞典
1571070947:“ MQTT-MTD:将移动目标辩护集成到MQTT方案中,作为TLS的替代方案。 Khalid Chougdali (Ibn Tofail University, Morocco) 1571070585 : “ Towards an SDN-Based Reconfigurable Edge Architecture for Railway Environment”, Radheshyam Singh (Technical University of Denmark, Denmark) Mohamed Aymen Chalouf (IRISA Lab - University of Rennes 1, France), Leo Mendiboure (Université Gustave Eiffel, France), Michael S. Berger和Lars Dittmann(丹麦丹麦技术大学)1571084296:“自适应PMME PMME Medium Access Control Control协议的多事件IoT传感器网络” Nguyen Thi thi-thi-thi-thi-thi-thu-hang(邮政和电信技术研究所,越南和米德尔塞克斯大学,英国,英国) 1571088118:“评估入侵检测的机器学习算法:迈向确保实地大数据的一步” Ikram Hamdaoui,Khalid El Makkaoui,Zakaria elali(NADOR的MF)
与Emova.me公司(https://www.emova.me/)密切合作,来自Irisa和Rennes University的Virtus团队,正在寻求从一些单眼观点中改善Avatars的3D重建。传统上,从多个视图中拟合模板多边形网格(一个3D形态模型)的头像重建方法搜索,并估计照明特性以将材料属性作为2D纹理提取[6]。然而,这些技术存在局限性(处理头发或胡须外观,缺乏镜面,缺乏眼睛或嘴巴等关键特征的精度)。最近的混合技术一直在混合神经辐射场估计(NERFS [4],高斯Splats [3])与基于网格的重建,以通过覆盖模板网层表面上的NERFS,2D或3D Splats来显着提高现实主义水平[1,2,2,7]。然而,这种神经辐射现场技术需要大量的视图来执行定性估计。在有限视图作为输入的情况下,该技术需要依靠强壮的先验,要么通过编码在潜在空间表示中的头像出现[5,7],对数千个真实或合成模型进行了培训,要么通过提供其他指导来确保神经场重建的融合。
本文报告的工作得到了欧洲配套措施 ARTIST、高级实时系统和欧洲卓越网络 ARTIST2 的支持。Wilhelm 和 Thesing 就职于德国萨尔大学信息科学系,地址:D-66041 萨尔布吕肯。Engblom 就职于 Virtutech AB,地址:Norrtullsgatan 15,SE-113 27 斯德哥尔摩。Ermedahl 就职于瑞典梅拉达伦大学计算机科学与电子系,地址:PO Box 883,SE 72123 V¨aster˚as。Holsti 就职于芬兰赫尔辛基 Tidorum Ltd,地址:Tiirasaarentie 32,FI-00200。Whalley 就职于美国佛罗里达州立大学计算机科学系,地址:佛罗里达州塔拉哈西 32306-4530。这些作者负责本文,并撰写了问题领域的介绍和技术概述。他们还编辑了工具描述,使其更加统一。工具描述由 Guillem Bernat、Christian Ferdinand、Andreas Ermedahl、Reinhold Heckmann、Niklas Holsti、Tulika Mitra、Frank Mueller、Isabelle Puaut、Peter Puschner、Jan Staschulat、Per Stenstr¨om 和 David Whalley 提供。Bernat 就职于 Rapita Systems Ltd.,IT 中心,约克科技园,Heslington,约克 YO10 5DG,英国。Ferdinand 和 Heckmann 就职于 AbsInt Angewandte Informatik,科技园 1,D-66123 萨尔布吕肯。 Mitra 就职于新加坡国立大学计算机学院计算机科学系,地址:3 Science Drive 2,新加坡 117543。Mueller 就职于北卡罗来纳州立大学计算机科学系,地址:Raleigh,NC 27695-8206。Puaut 就职于 IRISA,Campus univ. de Beaulieu,F- 35042 Rennes C´edex。Puschner 就职于维也纳技术大学技术信息学院,地址:A-1040 Wien。Staschulat 就职于布伦瑞克工业大学计算机与通信网络工程学院,地址:Hans-Sommer-Str. 66,D-38106 Braunschweig。Stenstr¨om 就职于查尔姆斯理工大学计算机工程系,地址:S-412 96 G¨oteborg。允许免费为个人或课堂使用制作本材料的全部或部分的数字/硬拷贝,前提是复制或分发不是为了盈利或商业利益,ACM 版权/服务器声明、出版物标题及其日期应出现,并声明复制是经 ACM, Inc. 许可的。以其他方式复制、重新发布、发布在服务器上或重新分发到列表需要事先获得特定许可和/或付费。c ⃝ 20YY ACM 0164-0925/20YY/0500-00001 5.00 美元
本文报告的工作得到了欧洲配套措施 ARTIST、高级实时系统和欧洲卓越网络 ARTIST2 的支持。Wilhelm 和 Thesing 就职于德国萨尔大学 Fachrichtung Informatik,地址:D-66041 萨尔布吕肯。Engblom 就职于 Virtutech AB,地址:Norrtullsgatan 15,SE-113 27 斯德哥尔摩。Ermedahl 就职于瑞典梅拉达伦大学计算机科学与电子系,地址:PO Box 883,SE 72123 V¨aster˚as。Holsti 就职于芬兰赫尔辛基 Tidorum Ltd,地址:Tiirasaarentie 32,FI-00200。Whalley 就职于美国佛罗里达州立大学计算机科学系,地址:佛罗里达州塔拉哈西 32306-4530。这些作者负责本文,并撰写了问题领域的介绍和技术概述。他们还编辑了工具描述,使其更加统一。工具描述由 Guillem Bernat、Christian Ferdinand、Andreas Ermedahl、Reinhold Heckmann、Niklas Holsti、Tulika Mitra、Frank Mueller、Isabelle Puaut、Peter Puschner、Jan Staschulat、Per Stenstr¨om 和 David Whalley 提供。Bernat 就职于 Rapita Systems Ltd.,IT 中心,约克科技园,Heslington,约克 YO10 5DG,英国。Ferdinand 和 Heckmann 就职于 AbsInt Angewandte Informatik,科技园 1,D-66123 萨尔布吕肯。 Mitra 就职于新加坡国立大学计算机学院计算机科学系,地址:3 Science Drive 2,新加坡 117543。Mueller 就职于北卡罗来纳大学计算机科学系。
首先我要感谢我的论文指导老师 Yves Le Traon。Yves 首先给了我人力支持,这是迄今为止最重要的。他还为我打开了博士学位的大门。我记得我在法国电信实习期间我们在布列塔尼公路上的第一次讨论。每周在雷恩和拉尼翁之间消磨四个小时,但涵盖的话题却如此之多。在神学、历史学和哲学之间,走过的路是最丰富的。希望在卢森堡,你终于可以喘口气,享受你的大家庭了。我还要感谢我在法国电信的团队领导 Bertrand Nicolas。Bertrand 教会了我很多关于跨国公司运作以及更广泛的政治机构的知识。我感谢法国电信和 Irisa 的同事,感谢他们提供的宝贵帮助以及我度过的美好时光。很难列出详尽的列表。我想到了 Maryvonne,我在 Lannion 的办公室同事,Jacques 和他爆炸性的幽默,Marianno 的建议,Grégoire 和 Sébastien 的帮助。我还想到了 Sakku、Chi dung 和 Yves-Marie。感谢雷恩的整个 Triskell 团队,当然还有 Jean-Marc 对我的欢迎。感谢 Didier、François 和 Cyril 的帮助;诺埃尔、弗兰克和罗伯特负责爵士即兴演奏; Reda、Julien、Jean-Marie 和 Gilles 带来了欢笑(感谢 Gilles 的心理支持)。我还想到了奥利维尔、弗雷迪、罗曼和布莱斯。我要特别感谢我的导师 Benoît,他长期训练我撰写科学文章。还要感谢 Philippe de l’Ensieta 对形式方法的解释。感谢我的母亲安妮、我的父亲克里斯蒂安以及我的岳父杰拉德和帕斯卡尔。没有他们的教育,我很难写出这篇手稿。作为一名法语老师,克里斯蒂安完全重读并修改了这份手稿;如果有拼写错误,不用说我要负责(尽管!;-)。感谢我的家人在我无法与他们在一起时的理解。论文是一项耗时的活动,充满了不可预见的事件,其中组织更加重要,因为它不是我的首要品质(这是轻描淡写的......)。法国大游所以必不可少,我的行李箱已经准备好了。感谢我的老朋友们的节日支持。博士生的焦虑并不容易理解。感谢您的轻松沟通。我特别感谢 Marion 的耐心。抱歉,由于时间不够,我们无法分享所有内容。需求工程领域本身就特别具有教育意义。我花了一段时间才理解这部分信息科学的基础。我首先对该领域的关注点(目标、策略、社交互动等)感到惊讶,这些关注点与与软件实现严格相关的领域(设计、测试等)相去甚远。后来我明白,软件只是系统可以采用的多种形式之一。它也与一群人的组织有关,更广泛地说与社会工程有关。这些知识现在在很多领域对我都很有用。最后,我意识到我有机会从事这项工作。撰写论文是一项艰巨的考验。这项长期工作历时四年,培养了耐心和决心。他学会了搜索、分类和比较信息,这是当今的一项重要资产。它迫使人们同时用两种语言阅读、写作和思考,这是一种奇妙的体验。发现这个世界教会了我很多关于自己的知识,并让我能够完善我未来的项目。