通过在体内大规模地同时进行超突变和选择,微生物宿主中的酶和其他蛋白质的连续定向进化能够超越经典定向进化,并且只需极少的手动输入。如果目标酶的活性可以与宿主细胞的生长相结合,那么只需选择生长就可以提高活性。与所有定向进化一样,连续版本不需要事先了解目标的机制。因此,连续定向进化是修改植物或非植物酶以用于植物代谢研究和工程的有效方法。在这里,我们首先描述用于连续定向进化的酵母(酿酒酵母)OrthoRep 系统的基本特征,并将其与其他系统简要比较。然后,我们将逐步介绍使用 OrthoRep 进化主要代谢酶的三种方式,并以 THI4 噻唑合酶为例并说明获得的突变结果。最后,我们概述了 OrthoRep 的应用,这些应用满足了日益增长的需求:(i)改变植物酶的特性以便返回植物;(ii)改造(“植物化”)原核生物(尤其是外来原核生物)的酶,使其在温和的类植物条件下发挥良好作用。
在这项研究中,我们发现了激活胁迫弹性的内在生物学机制的小分子药物。 因此,我们提出了一种新的治疗剂,即“压力弹性 - 增强药物”(SREDS),用于治疗急性和/或慢性应激相关的病理状况,重点是与年龄相关和遗传性视网膜疾病。 基于利用最先进的疾病建模和表征的系统药理学平台,我们的发现揭示了与调节压力弹性和视网膜变性有关的重要细胞类型和信号通路。 通过利用复杂的多因素疾病中的动作的整合机制,sreds代表了一种有希望的策略,用于在早期发病机理的早期阶段对疾病打击具有较高功效的疾病,从而增强目前可在反基因生成剂,皮质类药物和非属性抗药性抗体症中可用于的雌激素药物库当前可用。在这项研究中,我们发现了激活胁迫弹性的内在生物学机制的小分子药物。因此,我们提出了一种新的治疗剂,即“压力弹性 - 增强药物”(SREDS),用于治疗急性和/或慢性应激相关的病理状况,重点是与年龄相关和遗传性视网膜疾病。基于利用最先进的疾病建模和表征的系统药理学平台,我们的发现揭示了与调节压力弹性和视网膜变性有关的重要细胞类型和信号通路。通过利用复杂的多因素疾病中的动作的整合机制,sreds代表了一种有希望的策略,用于在早期发病机理的早期阶段对疾病打击具有较高功效的疾病,从而增强目前可在反基因生成剂,皮质类药物和非属性抗药性抗体症中可用于的雌激素药物库当前可用。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecommons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
摘要目的。脑损伤是全球范围内导致长期残疾的主要原因,常常导致手部功能受损。脑机接口 (BMI) 为改善手部功能提供了一种潜在的方法。BMI 通常旨在替代失去的功能,但也可用于神经康复 (nrBMI),促进神经可塑性和功能恢复。本文,我们报告了一种新型 nrBMI,它能够通过独特的 TBI 后开颅手术窗口模型获取高 g (70-115 Hz) 信息,并提供与预期抓握力同步且成比例的感觉反馈。方法。我们开发了 nrBMI,以使用在脑外伤 (TBI) 患者开颅手术 (hEEG) 中记录的脑电图。nrBMI 使用户能够对施加的力进行连续、成比例的控制,并提供连续的力反馈。我们报告了初始测试组由三名 TBI 人类参与者组成,以及对照组由三名颅骨和运动功能完整的志愿者组成。主要结果。所有参与者均成功控制了 nrBMI,初始成功率很高(6 名参与者中的 2 名)或表现随着时间的推移而改善(6 名参与者中的 4 名)。我们在 hEEG 中观察到了力意图的高 g 调制,但在颅骨完整的 EEG 中没有观察到。最重要的是,我们发现高 g 控制显著改善了神经调制开始和 nrBMI 输出/触觉反馈之间的时间同步(与低频 nrBMI 控制相比)。意义。这些概念验证结果表明,高 g nrBMI 可供控制力能力受损的个体使用(无需立即诉诸 ECoG 等侵入性信号)。值得注意的是,nrBMI 包含一个参数,用于更改解码意图和意志力之间共享的控制分数,以调整恢复进度。神经调节和高 g 信号力控制之间的同步性提高可能对最大限度地发挥 nrBMI 诱导神经回路可塑性的能力至关重要。诱导可塑性对于脑损伤后的功能恢复至关重要。
台山反中微子观测站(TAO,又称JUNO-TAO)是江门地下中微子观测站(JUNO)的卫星实验。一台吨级液体闪烁体探测器将放置在距离台山核电站核心约 30 米的地方。反应堆反中微子谱将以亚百分能量分辨率进行测量,为未来的反应堆中微子实验提供参考谱,并为测试核数据库提供基准测量。一个装有 2.8 吨钆掺杂液体闪烁体的球形丙烯酸容器将通过 10 m 2 硅光电倍增管 (SiPM) 进行观察,其光子探测效率 > 50%,几乎完全覆盖。光电子产量约为每兆电子伏 4500 个,比任何现有的大型液体闪烁体探测器都要高一个数量级。该探测器在 -50 ◦ C 下运行,以将 SiPM 的暗噪声降低到可接受的水平。该探测器每天将测量约 2000 个反应堆反中微子,并设计为能够很好地屏蔽宇宙背景和环境放射性,使背景信号比约为 10%。该实验预计将于 2022 年开始运行。
B细胞急性淋巴细胞白血病(B-ALL)的高风险亚型经常与异常激活酪氨酸激酶(TKS)有关。这些包括由BCR-ABL驱动的pH+ B-all,以及类似pH的B-all,它带有其他染色体重排和/或基因突变,这些突变激活TK信号传导。目前,酪氨酸激酶抑制剂(TKI)dasatinib被添加到化学疗法中,作为pH+ B-all的护理标准,并且在临床试验中对TKIS进行了测试,以供PH样B-all。然而,即使在针对驱动癌基因的TKI治疗的细胞中,白血病微环境中的生长因子和营养也可以支持细胞周期和存活。这些刺激在激酶MTOR上汇聚,其升高的活性与预后不良有关。在pH+和pH样B-全部的临床前模型中,mTOR抑制剂强烈增强了TKI的抗白血病效率。尽管在B-all中靶向MTOR的概念性有很强的概念基础,但在临床上测试的第一代MTOR抑制剂(Rapalogs和MTOR激酶抑制剂)尚未显示出明确的治疗窗口。这篇评论的目的是将新的治疗策略引入类似于pH的B-All的管理。我们讨论了靶向MTOR的新方法,以克服先前MTOR抑制剂类别的局限性。一种方法是应用对MTOR复合物-1(MTORC1)选择性的第三代双层抑制剂,并以间歇性给药显示临床前的效率。一种独特的非药物方法是将营养限制用于恶性B-所有细胞中的靶向信号传导和代谢依赖性。这两种新方法可以增强pH样白血病中的TKI效率并提高生存率。
摘要:量化美国对野火的生计脆弱性是一项挑战,因为需要系统地将多维变量整合到分析中。我们旨在通过制定一个框架来计算最近遭受野火侵袭最多的 14 个美国州的生计脆弱性指数 (LVI),从而衡量野火对人类及其物质和社会环境的威胁。LVI 是通过评估每个州对野火事件的贡献因素(暴露度、敏感性和适应能力)来计算的。这些贡献因素通过一组指标变量来确定,这些指标变量被分类为相应的组以生成 LVI 框架。通过执行主成分分析 (PCA) 来验证该框架,确保每个选定的指标变量都与正确的贡献因素相对应。我们的结果表明,亚利桑那州和新墨西哥州的生计脆弱性最大。相比之下,加利福尼亚州、佛罗里达州和德克萨斯州的生计脆弱性最小。虽然加州是野火风险和敏感度最高的州之一,但结果表明,与其他州相比,加州的适应能力相对较高,表明加州已采取措施抵御这些脆弱性。这些结果对于野火管理人员、政府、政策制定者和研究科学家来说至关重要,有助于确定并提供更好的弹性和适应性
摘要:外延和晶圆键合系统界面的研究借鉴了材料科学、电气工程和机械工程,涉及先进的材料表征技术。低温晶圆键合已被用来生产各种各样的材料组合,最显著的是绝缘体上硅结构。然而,对外延和键合界面的修改会影响这些界面上的电或热传输。在本演讲中,我们提供了几个半导体和金属基系统的例子,以解决研究和修改不同、技术上重要的界面组合作为处理(如退火)的功能的能力。材料组合范围从 Si|Si 和 Si|Ge 到宽带隙材料组合,包括 GaN|Si 到 b-Ga 2 O 3 | SiC 以及金属|金属热压键合。我们的主要目标是能够研究和设计界面以优化属性并最终优化设备性能。这些研究是 MURI 项目“利用新的理论范式增强宽带隙电力电子中的界面热传输”的一部分。