王子科菲·帕比(Taketoshi Mizutani),阿亚萨卡卡(Aya Ishizaka),ai川瓦纳(Ai Kawana-tachikawa),幸运的罗纳德·伦图内(Lucky Ronald Runtuwene),satoshi uematsu,seiya imoto,yasumasa kimura,kimura,kiyono kiyono kiyono kiyono kiyono kiyono kiyono kiyoy kiyoy kioyono kioyono, Koichi Kiyono,Koichi Kiyono,Koichi Kiyono,Koichi Kiyono,Koichi Kiyono,Koichi Kiyono,Koichi Kiyono。 Ishikawa,William Kwabena Ampofo和Tetsuro Matano div div>
1。Ishikawa和Al。 (2008)自然455 674 2。 Ishikawa和Al。 (2009)自然461 788 3。 公共和al。 (2011)自然478 515 4。 Ahn and Barber(2014)当前。 31 121 5。 Blause和Al。 (2014)J.Immunol 192 5993 6。 woo and al。 (2015)免疫趋势。 36 250 7。 准备和al。 (2012),J.Biol。 287 39776 8。 conlon和al。 (2013),J.Immunol 190 5216 9。 张和al。 (2015),Mol.Cell,51 226 10。 Wu和Al (2013),科学339 826 11。 张和al。 (2018),Chem.Med.Chem。 13 2057 12。 Vincent和Al。 (2017),Nat。 公社。 8 750 13。 下巴和Al。 (2020),科学369 993 14。 li和al (2024),Nat。 化学。 生物 20 365 15。 parasa和al (2023),J。 am。 Soc。 化学。 145 20273 16。 中村和al。 (2024),Bioorg。 但是。 化学。 Lett。Ishikawa和Al。(2008)自然455 674 2。Ishikawa和Al。 (2009)自然461 788 3。 公共和al。 (2011)自然478 515 4。 Ahn and Barber(2014)当前。 31 121 5。 Blause和Al。 (2014)J.Immunol 192 5993 6。 woo and al。 (2015)免疫趋势。 36 250 7。 准备和al。 (2012),J.Biol。 287 39776 8。 conlon和al。 (2013),J.Immunol 190 5216 9。 张和al。 (2015),Mol.Cell,51 226 10。 Wu和Al (2013),科学339 826 11。 张和al。 (2018),Chem.Med.Chem。 13 2057 12。 Vincent和Al。 (2017),Nat。 公社。 8 750 13。 下巴和Al。 (2020),科学369 993 14。 li和al (2024),Nat。 化学。 生物 20 365 15。 parasa和al (2023),J。 am。 Soc。 化学。 145 20273 16。 中村和al。 (2024),Bioorg。 但是。 化学。 Lett。Ishikawa和Al。(2009)自然461 788 3。公共和al。(2011)自然478 515 4。Ahn and Barber(2014)当前。31 121 5。Blause和Al。(2014)J.Immunol 192 5993 6。 woo and al。 (2015)免疫趋势。 36 250 7。 准备和al。 (2012),J.Biol。 287 39776 8。 conlon和al。 (2013),J.Immunol 190 5216 9。 张和al。 (2015),Mol.Cell,51 226 10。 Wu和Al (2013),科学339 826 11。 张和al。 (2018),Chem.Med.Chem。 13 2057 12。 Vincent和Al。 (2017),Nat。 公社。 8 750 13。 下巴和Al。 (2020),科学369 993 14。 li和al (2024),Nat。 化学。 生物 20 365 15。 parasa和al (2023),J。 am。 Soc。 化学。 145 20273 16。 中村和al。 (2024),Bioorg。 但是。 化学。 Lett。(2014)J.Immunol192 5993 6。woo and al。(2015)免疫趋势。36 250 7。准备和al。(2012),J.Biol。 287 39776 8。 conlon和al。 (2013),J.Immunol 190 5216 9。 张和al。 (2015),Mol.Cell,51 226 10。 Wu和Al (2013),科学339 826 11。 张和al。 (2018),Chem.Med.Chem。 13 2057 12。 Vincent和Al。 (2017),Nat。 公社。 8 750 13。 下巴和Al。 (2020),科学369 993 14。 li和al (2024),Nat。 化学。 生物 20 365 15。 parasa和al (2023),J。 am。 Soc。 化学。 145 20273 16。 中村和al。 (2024),Bioorg。 但是。 化学。 Lett。(2012),J.Biol。287 39776 8。conlon和al。(2013),J.Immunol 190 5216 9。 张和al。 (2015),Mol.Cell,51 226 10。 Wu和Al (2013),科学339 826 11。 张和al。 (2018),Chem.Med.Chem。 13 2057 12。 Vincent和Al。 (2017),Nat。 公社。 8 750 13。 下巴和Al。 (2020),科学369 993 14。 li和al (2024),Nat。 化学。 生物 20 365 15。 parasa和al (2023),J。 am。 Soc。 化学。 145 20273 16。 中村和al。 (2024),Bioorg。 但是。 化学。 Lett。(2013),J.Immunol190 5216 9。张和al。(2015),Mol.Cell,51 226 10。Wu和Al(2013),科学339 826 11。张和al。(2018),Chem.Med.Chem。 13 2057 12。 Vincent和Al。 (2017),Nat。 公社。 8 750 13。 下巴和Al。 (2020),科学369 993 14。 li和al (2024),Nat。 化学。 生物 20 365 15。 parasa和al (2023),J。 am。 Soc。 化学。 145 20273 16。 中村和al。 (2024),Bioorg。 但是。 化学。 Lett。(2018),Chem.Med.Chem。13 2057 12。Vincent和Al。(2017),Nat。 公社。 8 750 13。 下巴和Al。 (2020),科学369 993 14。 li和al (2024),Nat。 化学。 生物 20 365 15。 parasa和al (2023),J。 am。 Soc。 化学。 145 20273 16。 中村和al。 (2024),Bioorg。 但是。 化学。 Lett。(2017),Nat。公社。8 750 13。下巴和Al。 (2020),科学369 993 14。 li和al (2024),Nat。 化学。 生物 20 365 15。 parasa和al (2023),J。 am。 Soc。 化学。 145 20273 16。 中村和al。 (2024),Bioorg。 但是。 化学。 Lett。下巴和Al。(2020),科学369 993 14。li和al(2024),Nat。化学。生物20 365 15。parasa和al(2023),J。am。Soc。化学。145 20273 16。中村和al。(2024),Bioorg。但是。化学。Lett。Lett。
目的:OSU-03012是一种缺乏环氧酶-2抑制活性的塞来昔布衍生物和有效的PDK1抑制剂,该抑制剂已被证明可以以各种方式抑制肿瘤的生长。然而,OSU-03012在子宫内膜癌(EC)中的作用尚未研究高度激活的PI3K/AKT信号通路。在这里,我们确定了OSU-03012在体外和体内抑制EC进展方面的效力,并研究了下划线的机制。方法:人类EC Ishikawa和Hec-1a细胞用作体外模型。CCK8测定法和流式细胞仪,以评估细胞增殖,细胞周期进展和凋亡。使用Transwell迁移测定法评估了转移能力。Ishikawa异种移植肿瘤模型用于研究OSU-03012对体内EC生长的抑制作用。Western印迹分析以评估细胞周期和凋亡相关蛋白的表现。结果:OSU-03012可以通过破坏AKT信号传导来抑制EC在体外和体内的发展。它降低了EC的转移能力,导致G2/M细胞周期停滞,并通过线粒体凋亡途径诱导凋亡。结论:我们的数据表明OSU-03012可以抑制EC在体外和体内的进展。通过抑制AKT信号传导,它可以可能用作治疗EC的靶向药物。关键字:OSU-03012,子宫内膜癌,AKT信号,线粒体凋亡途径
n-(1,3-二甲基丁基)-N' - 苯基 - 苯基 - 苯基二氨基氨基(6PPD),一种广泛用于橡胶工业的合成添加剂,其氧化产物6ppd-奎因酮(6PPDQ)已广泛关注其潜在的化学效果,从而广泛地关注了它们的潜在化学效果,从而对其进行了危险效应。6ppd和6ppdq对女性生殖道的影响,尤其是胚胎植入,尚不清楚,并在这项研究中进行了研究。我们分别使用了人类胚泡和子宫内膜上皮的替代物的tropho blastic球体和Ishikawa细胞的球体附着和产物模型。用化学物质处理长达48小时,以剂量和细胞系依赖性方式降低了细胞的活力(两种细胞系的20 - 100μm6ppd和10-100μm6ppdq)。在非毒素浓度下,Ishikawa细胞暴露于1和10μm6ppd会降低贝型球体的附着,并进一步抑制其在子宫内膜上皮单层上的侵袭和出生。在1μm6ppDQ暴露组中观察到了类似的结果。6PPD和6PPDQ暴露的子宫内膜上皮细胞的基因表达分析表明,6PPD和6PPDQ均以差异调节转录标记物的整体下调接受和浸润。这项研究提供了6ppd和6ppdq对人子宫内膜接受能力和滋养细胞侵袭的第一个证明,这是在植物窗口期间的,因此有必要进一步进行体内和临床研究。
2024 年 1 月 1 日 16:10,日本石川县能登半岛发生里氏 7.6 级地震(GLIDE 编号 EQ- 2024-000001-JPN),震中位于日本石川县能登半岛,志贺町发生 7 级(JMA)地震,能登半岛许多市镇发生 6 级以上和 6 级以下地震。此外,还观测到高达 1.2 米的海啸。地震造成大量人员死亡、受伤、房屋和建筑物倒塌、火灾和山体滑坡。亚洲哨兵项目秘书处 ADRC 是 DRR 应用空间技术的机构,在灾难发生后收到了紧急观测请求,并正在评估受灾中心能登半岛的损失情况,并收集最新信息。
乳腺癌患者:病例系列与文献综述。Semin Oncol。2021;48:283-291。3.Chikasue T,Kurata S,Sumi A,Matsuda A,Tsubaki F,Fujimoto K 等。接种冠状病毒病 2019 疫苗后单侧腋窝淋巴结氟脱氧葡萄糖摄取。亚洲海洋核医学杂志。2022;10:142-146。4.Satoh H,Ishikawa H,Kagohashi K,Kurishima K,Sekizawa K。肺癌腋窝淋巴结转移。Med Oncol。2009;26:147-150。5.El-Sayed MS,Wechie GN,Low CS,Adesanya O,Rao N,Leung VJ。COVID-19 的发病率和持续时间
子宫内膜接受受损是子宫内膜异位症患者(EM)患者不育症的主要因素,但潜在机制尚不清楚。我们的研究旨在研究Kruppel样因子15(KLF15)在子宫内膜接受能力中的作用及其在EM中的调节。与没有EM的正常女性相比,我们观察到EM患者的中分泌上皮子宫内膜细胞的KLF15表达显着降低。确认KLF15在子宫内膜接受性中的作用,我们发现通过用子宫角通过子宫角感染siRNA,在大鼠模型中胚胎植入数量显着降低,胚胎植入数量显着降低。这突出了KLF15作为调节剂接受能力的重要性。此外,通过CHIP-QPCR,我们发现孕酮受体(PR)直接与KLF15启动子区域结合,表明孕酮耐药性可能介导EM患者KLF15表达的降低。此外,我们发现EM患者的中期子宫内膜表现出受损的上皮 - 间质转变(EMT)。敲低KLF15上调的E-钙粘蛋白并下调波形蛋白表达,从而抑制了Ishikawa细胞的侵入性和迁移。 过表达KLF15促进EMT,侵入性和迁移能力,并增加罐子细胞的附着速率。 通过RNA-Seq分析,我们将Twist2确定为KLF15的下游基因。 我们证实,KLF15通过CHIP-QPCR直接与Twist2的启动子区域结合,在建立子宫内膜接受期间促进上皮细胞EMT。敲低KLF15上调的E-钙粘蛋白并下调波形蛋白表达,从而抑制了Ishikawa细胞的侵入性和迁移。过表达KLF15促进EMT,侵入性和迁移能力,并增加罐子细胞的附着速率。通过RNA-Seq分析,我们将Twist2确定为KLF15的下游基因。 我们证实,KLF15通过CHIP-QPCR直接与Twist2的启动子区域结合,在建立子宫内膜接受期间促进上皮细胞EMT。通过RNA-Seq分析,我们将Twist2确定为KLF15的下游基因。我们证实,KLF15通过CHIP-QPCR直接与Twist2的启动子区域结合,在建立子宫内膜接受期间促进上皮细胞EMT。我们的研究揭示了KLF15参与子宫内膜接受能力及其对EMT的下游影响。这些发现提供了对EM患者治疗非受毒性子宫内膜的潜在治疗方法的宝贵见解。
在2024年1月1日16:10,在Richter量表上发生7.6级地震(Glide No.eq-2024-000001-jpn)以日本的尼川县Noto半岛为中心,在shika镇引起了7(JMA)的强度,在Noto Peninsula的许多市政府中的强度为6+和6-的强度。另外,观察到高达1.2 m的海啸。地震造成许多死亡,伤害,房屋和建筑物,火灾和滑坡的崩溃。ADRC是Space Technology的Sentinel Asia项目秘书处,在灾难后收到了紧急观察的要求,并正在努力评估损害中心Noto Peninsula的损害,并正在收集最新信息。
Horia Manolea(罗马尼亚)Florin Miculescu(罗马尼亚)Horia Benea(罗马尼亚)Julia Mirza Rosca(西班牙)Cristina-ioana Bica(罗马尼亚)Aurel Mohan(Romania)(罗马尼亚)Elvira Bratila(Romania)阿德·塞里亚(罗马尼亚)马里奥·蒙宗(西班牙)cristian dinu(罗马尼亚)corneliu munteanu(罗马尼亚)ki dong Park(韩国)Corrado Piconi(意大利)Razvan Ene(Rosania) Amina Gharbi(突尼斯)Rui Reis(葡萄牙)Brandusa Ghiban(罗马尼亚)Octav Russu(罗马尼亚)Gultekin Goller(土耳其)Geoff Richards(瑞士)Gabriela Graziani(意大利)意大利(意大利) Iliana Verestiuc(罗马尼亚)Kunio Ishikawa (日本) Petrică Vizureanu (罗马尼亚) Viorel Jinga (罗马尼亚) Stefan Voicu (罗马尼亚) Earar Kamel (罗马尼亚) Yufeng Zheng (中国) BIommeDD 会议
