1。Introduction .................................................................................................................................................................... 2 2.emi优化的设计....................................................................................................................................................................................................................................................................................... 2 2.1。CA-IS3115AW General Description ....................................................................................................................................... 2 2.2.EMI Filter and Component Placement .................................................................................................................................. 3 2.2.1.Decoupling Capacitor Placement ......................................................................................................................3 2.2.2.Y-capacitor ........................................................................................................................................................4 2.2.3.Ferrite Bead/Common-mode Inductor/Differential-mode Inductor ................................................................4 2.2.4.Building the edge guarding ...............................................................................................................................5 3.CA-IS3115AW Reference Designs ................................................................................................................................... 6 3.1.CA-IS3115AW Reference Design Schematic (2-layer PCB) ................................................................................8 3.2.3.Reference Design Overview .................................................................................................................................................. 6 3.2.2-layer PCB with CM-choke on Board ................................................................................................................................... 6 3.2.1.PCB Layout Procedure .......................................................................................................................................6 3.2.2.Reference Design Test Result for the 2-layer PCB .............................................................................................8 3.3.4-Layer PCB with CM-choke on Board ................................................................................................................................. 10 3.3.1.PCB Layout Procedure .....................................................................................................................................10 3.3.2.CA-IS3115AW Reference Design Schematic(4-layer PCB) ...............................................................................12 3.3.3.Reference Design Test Result for the 4-layer PCB ...........................................................................................12 3.4.4-Layer PCB without CM-choke on Board ........................................................................................................................... 14 3.4.1.PCB Layout Procedure .....................................................................................................................................14 3.4.2.CA-IS3115AW Reference Design Schematic (4-layer PCB) ..............................................................................16 3.4.3.Reference Design Test Result for the 4-layer PCB ...........................................................................................16 4.Revision History ............................................................................................................................................................ 18 5.Important Statement .................................................................................................................................................... 18
通讯电子邮件:bahauddeen.salisu@umyu.edu.ng引言化学农药和肥料对农业产量至关重要,但是它们对环境,植物,动物和人类健康的有害影响已导致对环保的植物保护植物保护(Patel等。,2014年)。生物肥料由从植物根或土壤中提取的活微生物组成(Aggani,2013年),它在化学肥料的替代品中广受欢迎。它们通过增加氮的可用性来降低农作物的生产成本,提高生长和产量,并促进生长促进性物质(如生长素,细胞分裂素和吉伯林林)的生产(Bhattacharjee和Dey,2014年)。含有有益微生物的生物肥料,而不是合成化学物质,而是通过提供必需的养分来改善植物的生长,同时保持环境健康和土壤生产率(Singh等,2011; Verma等,2017)。他们
抽象的delftia已与淡水,污泥和土壤分离,并已成为雌性阴道中一种新型的机会性病原体。然而,仍然需要全面研究基因组特征,致病性和生物技术特性。在这项研究中,从一名具有组织学确认的宫颈上皮内肿瘤(CIN III)的43岁女性的阴道中分离出left菌菌株,然后进行全基因组测序。系统发育分析和平均核苷酸同一性(ANI)分析表明,它属于Defltia lacustris,称为D. lacustris菌株LZHVAG01。lzhvag01对β-内酰胺,大环内酯类和四环素敏感,但对林肯胺,亚硝基咪唑,氨基糖苷和氟喹啉酮表现出抗性。其基因组是单个圆形染色体,为6,740,460 bp,平均GC含量为66.59%。全基因组分析鉴定了16个与抗生素抗性相关的基因,这些基因与该菌株的抗菌敏感性谱和11个潜在的毒力基因相匹配。这些致病因素可能有助于其在阴道环境中的定殖及其适应和加速宫颈癌的进展。这项研究测序并表征了从阴道分离中分离出的delftia lacustris的整个基因组,该分泌物为研究人员和临床医生提供了对这种不常见物种的宝贵见解。
a 波兰克拉科夫 AGH 大学。b 西班牙巴塞罗那国立微电子中心 (CNM)。c 苏格兰格拉斯哥大学。d 苏格兰爱丁堡大学。e 美光半导体有限公司,英国兰辛。f 英国曼彻斯特大学。g 苏格兰爱丁堡微电子中心,苏格兰。
在实验室中已经实现了高度复杂的叠加状态[1]。尽管它们看起来很脆弱,但这种状态在量子信息和计算以及量子基础中的理论问题中至关重要。可能会感到惊讶的是,具有许多自由度的孤立系统自然地演变成宏观的叠加状态。这些状态包含正交成分,这些成分在宏观量中存在,例如通常被认为是自然界“经典”的大物体的位置或动量。在接下来的内容中,我们使用一个特定的示例(本质上是布朗运动的示例)来说明这一结果是如何遵循约翰·冯·诺伊曼(John von Neumann)[2]的1929年量子量表定理(QET)的。该定理在2009 - 10年的复活中已被遗忘了50多年[3,4]。QET包含与量子统计力学和量子力学基础相关的见解。我们对后一个主题的一些评论得出结论。QET超出了有关分离的量子系统中热促进的典型性(量度集中)结果[5]。典型性结果表明,大型系统的几乎所有纯状态ψ都最大地纠缠在一起,并且在除小的子空间1以外的所有内容都产生了一个density矩阵휌1,它接近归一化的身份,即微域密度矩阵。这意味着小子空间的热特性。QET专门集中在宏观观察物的子空间上,而不是微观自由度的一般子集。对状态von Neumann证明了系统的时间演变(千差线):所有初始状态ψ0都将大部分时间作为典型状态作为宏观空间的典型状态(请参见下面的等式(11)),当然是该定理所需的某些假设所需的某些假设[6]。下面给出的计算说明,对于大型系统的任何子空间(例如,包括一组宏观可观察物所定义的子空间定义),密度操作员휌1通过追踪在其他随机纯状态的自由度上引起的密度操作员是非常可能的,这是非常可能的接近휌1〜1。基于该措施的主导地位,人们可以启发性地说,即使系统以强烈侵犯该特性的特殊状态开始,动态演变也会导致其大部分时间在典型的状态下。QET为这种直觉提供了严格的基础。令{휙1,푗1}푛1= 1 = 1 = 1和{휙2,푗2}푛2= 1 = 1 = 1是两个标记为1和2的Hilbert Space的正对异性态的一组,带有身份操作员,具有身份操作员퐼1和퐼2。
产品概述 NSI8608 是完全集成的隔离数字输入接收器,具有 IEC 61131-2 1、2 和 3 类特性。该设备接收 24 V 至 60 V 数字输入信号并提供隔离数字输出。无电源的现场侧输入通过集成整流桥支持吸电流和源电流输入。该设备集成了限流功能,可有效降低解决方案的整体温度。电压转换阈值符合 1、2 和 3 类标准,可使用外部电阻进一步提高。NSI8608 使用“自适应 OOK”调制技术将数字数据传输到基于二氧化硅的隔离屏障上。发射器发送高频载波穿过屏障以表示一种数字状态,不发送信号以表示另一种数字状态。接收器在高级信号调节后解调信号并通过缓冲级产生输出。主要特点
传染病暴发是水产养殖中的主要挑战之一。因此,对可持续水产养殖实践的益生菌的应用有越来越多的兴趣,以最大程度地减少传染病的传播。在这项研究中,将细菌从Pinctada降射中分离出来,以检查其益生菌潜力。 乳酸细菌(LAB)可能是水产养殖的益生菌候选物。 从珍珠牡蛎p的肠道含量中分离出五个实验室菌株。 Radiata(Leach,1814年),位于红海的吉达海岸。 实验室在形态,生物学和生化上进行了特征,检查了其益生菌特性,并使用16S rRNA测序鉴定。 五个选定的孤立实验室菌株是革兰氏阳性(杆和球菌),并测试了过氧化氢酶和氧化酶的阴性。 实验室菌株被鉴定为Valezensis(POR1),B。siamensis(Por2),葡萄球菌表皮#1和S。 表皮#2(POR3和POR5)和s。 hominis(POR4)。 POR1和POR2测试了γ-溶血活性的阴性,而POR3,POR4和POR5测试了α-溶血活性阳性。 所有五种菌株均对抗生素敏感,包括红霉素(E10),硝基纤维化(F100)和Novobiocin(NV5),四种菌株显示出高达2.5 pH的酸耐受性。 在分离株中,POR1、2、4、5耐受的3小时暴露于0.3%的胆汁盐。 所有实验室菌株均表现出对S临床菌株的拮抗活性。 金黄色葡萄球菌,鲍马尼杆菌,耐甲氧西林的s。 金黄色和大肠杆菌。在这项研究中,将细菌从Pinctada降射中分离出来,以检查其益生菌潜力。乳酸细菌(LAB)可能是水产养殖的益生菌候选物。从珍珠牡蛎p的肠道含量中分离出五个实验室菌株。Radiata(Leach,1814年),位于红海的吉达海岸。实验室在形态,生物学和生化上进行了特征,检查了其益生菌特性,并使用16S rRNA测序鉴定。五个选定的孤立实验室菌株是革兰氏阳性(杆和球菌),并测试了过氧化氢酶和氧化酶的阴性。实验室菌株被鉴定为Valezensis(POR1),B。siamensis(Por2),葡萄球菌表皮#1和S。表皮#2(POR3和POR5)和s。hominis(POR4)。POR1和POR2测试了γ-溶血活性的阴性,而POR3,POR4和POR5测试了α-溶血活性阳性。所有五种菌株均对抗生素敏感,包括红霉素(E10),硝基纤维化(F100)和Novobiocin(NV5),四种菌株显示出高达2.5 pH的酸耐受性。在分离株中,POR1、2、4、5耐受的3小时暴露于0.3%的胆汁盐。所有实验室菌株均表现出对S临床菌株的拮抗活性。金黄色葡萄球菌,鲍马尼杆菌,耐甲氧西林的s。金黄色和大肠杆菌。因此,可以建议从p的肠道含量分离出的五个实验室菌株。辐射可能是水产养殖应用的良好候选益生菌。
PARAMETER MIN MAX UNIT VDD1, VDD2 Supply voltage 2 – 0.5 6.5 V VIN Analog input voltage GND1 – 6 VDD1 + 0.5 3 V SHTDN Shutdown mode control input voltage GND1 – 0.5 VDD1 + 0.5 3 V VOUTP, VOUTN Analog output voltage GND2 – 0.5 VDD2 + 0.5 3 V I IN Input current to any pin except supply pins – 10 10 mA T J Junction Temperature 150 °C T STG Storage Temperature – 65 150 °C NOTE: 1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute‐maximum‐rated conditions for extended periods may affect device reliability. 2. All voltage values are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values. 3. Maximum voltage must not exceed 6.5 V. 7.2 ESD Ratings VALUE UNIT
输出缓冲器由二氧化硅 (SiO2) 绝缘屏障隔开,可提供高达 3.75kV RMS (60s) 的电流隔离。隔离通过断开接地环路来改善通信,并在端口之间的接地电位差较大时降低噪声。CA-IS2062 在逻辑侧由单个 5V 电源供电。集成的 DC-DC 转换器为电缆侧产生 5V 工作电压。该设备不需要除旁路电容器以外的任何外部组件来实现隔离的 CAN 端口。收发器的工作数据速率高达 1Mbps,并具有集成保护功能以实现稳健的通信,包括电流限制、热关断和 CAN 总线上的扩展 ±58V 故障保护,适用于需要过压保护的设备。主要超时检测可防止由控制器错误或 TXD 输入故障引起的总线锁定。这些 CAN 接收器还包含 ±30V 的输入共模范围 (CMR),超过了 ISO 11898 规范的 -2V 至 +7V。 CA-IS2062 采用宽体 16 引脚 SOIC(W) 封装,工作温度范围为 -40°C 至 +125°C。
发起部门:国防部人事和战备事务副部长办公室 生效日期:2024 年 5 月 30 日 可发布性:已获准公开发布。可在指令司网站 https://www.esd.whs.mil/DD/ 上查阅。 批准人:Ashish S. Vazirani,履行国防部人事和战备事务副部长职责 目的:根据国防部指令 5124.02 中的授权,并根据公法 117-81(也称为 2022 财政年度国防授权法案)第 565 条的规定,此发布制定政策、分配职责并提供程序来评估和管理与在偏远和孤立的军事设施提供关键支持服务相关的挑战。