我们开发了一项基于语音的自定步调光标控制任务,以在单独发出音素(即元音、鼻音和摩擦音)时收集相应的颅内神经数据。两名植入颅内深度电极以进行临床癫痫监测的患者通过实时处理麦克风输入执行闭环语音光标控制。在事后数据分析中,我们搜索了与非特定语音或特定音素的发生相关的神经特征。与之前的研究一致,我们在颞上回的多个记录点观察到了对语音的开始和持续反应。基于高达 200 Hz 的窄频带中的不同激活模式,我们以 91% 的准确率(机会水平:50%)跟踪语音活动,并以 68% 的准确率(机会水平:20%)将单个话语归类为五个音素之一。我们提出,我们的框架可以扩展到其他音素,以更好地描述在没有语言背景的情况下产生和感知语音的神经生理机制。总的来说,我们的研究结果为使用颅内电极开发语音脑机接口提供了补充证据和信息。索引词:音素识别、颅内电极、语音开始、持续语音、脑机接口
本出版物中报告的研究得到了以下奖项的支持:儿科放射学会青年研究员奖 (CJ);施莱格神经科学研究奖学金 (CJ);美国国立卫生研究院,包括美国国立神经疾病和中风研究所 K23NS101120 (CKR)、美国国立生物医学成像和生物工程研究所 R01EB013248 (SKW) 和 R01EB018988 (AG),以及美国国家心肺血液研究所儿科心脏网络学者奖 (CKR);美国神经病学学会临床研究培训奖学金 (CKR);大脑和行为研究基金会国家精神分裂症和抑郁症研究联盟青年研究员 (CKR) 和杰出研究员 (SKW) 奖;麦克奈特基金会神经科学技术创新奖 (AG);波士顿儿童医院教师发展办公室职业发展奖 (AG、CKR);以及 Mend A Heart 基金会 (CMO)。
传染病暴发是水产养殖中的主要挑战之一。因此,对可持续水产养殖实践的益生菌的应用有越来越多的兴趣,以最大程度地减少传染病的传播。在这项研究中,将细菌从Pinctada降射中分离出来,以检查其益生菌潜力。 乳酸细菌(LAB)可能是水产养殖的益生菌候选物。 从珍珠牡蛎p的肠道含量中分离出五个实验室菌株。 Radiata(Leach,1814年),位于红海的吉达海岸。 实验室在形态,生物学和生化上进行了特征,检查了其益生菌特性,并使用16S rRNA测序鉴定。 五个选定的孤立实验室菌株是革兰氏阳性(杆和球菌),并测试了过氧化氢酶和氧化酶的阴性。 实验室菌株被鉴定为Valezensis(POR1),B。siamensis(Por2),葡萄球菌表皮#1和S。 表皮#2(POR3和POR5)和s。 hominis(POR4)。 POR1和POR2测试了γ-溶血活性的阴性,而POR3,POR4和POR5测试了α-溶血活性阳性。 所有五种菌株均对抗生素敏感,包括红霉素(E10),硝基纤维化(F100)和Novobiocin(NV5),四种菌株显示出高达2.5 pH的酸耐受性。 在分离株中,POR1、2、4、5耐受的3小时暴露于0.3%的胆汁盐。 所有实验室菌株均表现出对S临床菌株的拮抗活性。 金黄色葡萄球菌,鲍马尼杆菌,耐甲氧西林的s。 金黄色和大肠杆菌。在这项研究中,将细菌从Pinctada降射中分离出来,以检查其益生菌潜力。乳酸细菌(LAB)可能是水产养殖的益生菌候选物。从珍珠牡蛎p的肠道含量中分离出五个实验室菌株。Radiata(Leach,1814年),位于红海的吉达海岸。实验室在形态,生物学和生化上进行了特征,检查了其益生菌特性,并使用16S rRNA测序鉴定。五个选定的孤立实验室菌株是革兰氏阳性(杆和球菌),并测试了过氧化氢酶和氧化酶的阴性。实验室菌株被鉴定为Valezensis(POR1),B。siamensis(Por2),葡萄球菌表皮#1和S。表皮#2(POR3和POR5)和s。hominis(POR4)。POR1和POR2测试了γ-溶血活性的阴性,而POR3,POR4和POR5测试了α-溶血活性阳性。所有五种菌株均对抗生素敏感,包括红霉素(E10),硝基纤维化(F100)和Novobiocin(NV5),四种菌株显示出高达2.5 pH的酸耐受性。在分离株中,POR1、2、4、5耐受的3小时暴露于0.3%的胆汁盐。所有实验室菌株均表现出对S临床菌株的拮抗活性。金黄色葡萄球菌,鲍马尼杆菌,耐甲氧西林的s。金黄色和大肠杆菌。因此,可以建议从p的肠道含量分离出的五个实验室菌株。辐射可能是水产养殖应用的良好候选益生菌。
Mitchell G. Miglis,M.D。,1* Charles H. Adler教授,医学博士,2 Elena Antelmi,M.D。4.5 Luca Baldelli,医学博士,6教授Bradley F. Boeve M.D.,7 Matteo Cesari,博士,博士,8 Antonia,M.D. Jean-FrançoisGagnon博士,13 Ziv Gan-Or,M.D。14-16 Wiebke Hermann,医学博士,17.18BirgitHögl教授K.L.Leenders,M.D。,23 Simon J.G.教授 Lewis,M.D.,24 Claudio Liguori,M.D.,M.D. Jun Liu,M.D.,26 Christine Lo,M.D.,19 Kaylena A. Ehgoetz Martens,Ph.D.,27 Jiri Nepozitek,M.D. 31 Michal Rolinski,医学博士,32 Jan Rusz,Ph.D.,33 Ambra Stefani,M.D.,8 Rebekah L. S. Summers博士,博士,34 Dalh Yoo,M.D.,35 Jennifer Ziser,M.D. 21.38Leenders,M.D。,23 Simon J.G.教授Lewis,M.D.,24 Claudio Liguori,M.D.,M.D. Jun Liu,M.D.,26 Christine Lo,M.D.,19 Kaylena A. Ehgoetz Martens,Ph.D.,27 Jiri Nepozitek,M.D. 31 Michal Rolinski,医学博士,32 Jan Rusz,Ph.D.,33 Ambra Stefani,M.D.,8 Rebekah L. S. Summers博士,博士,34 Dalh Yoo,M.D.,35 Jennifer Ziser,M.D. 21.38Lewis,M.D.,24 Claudio Liguori,M.D.,M.D. Jun Liu,M.D.,26 Christine Lo,M.D.,19 Kaylena A. Ehgoetz Martens,Ph.D.,27 Jiri Nepozitek,M.D. 31 Michal Rolinski,医学博士,32 Jan Rusz,Ph.D.,33 Ambra Stefani,M.D.,8 Rebekah L. S. Summers博士,博士,34 Dalh Yoo,M.D.,35 Jennifer Ziser,M.D.21.38
摘要:本文的目的是研究最佳的电力存储方法,无论是从技术角度还是经济角度,适用于与发电厂集成的小型独立电网,这些发电厂可产生可再生能源 (RES)。作为案例研究,我们研究了三个自治希腊岛屿——锡米岛、阿斯蒂帕莱亚岛和卡斯特洛里佐岛——每年的峰值需求分别为 3.9 MW、2.1 MW 和 0.889 MW。所研究的每个岛屿都具有出色的太阳能和风能潜力,它们的位置非常适合安装海水 PHS(抽水蓄能)。关于能源存储设施,研究了两种不同的策略:PHS 系统(用于两个最大的岛屿)和电化学存储,这是铅酸或锂离子电池的另一个名称。潜在的 RES 装置包括光伏装置和风力发电场。所分析工厂的尺寸经过优化,目标一致:实现 RES 渗透率年百分比超过 69.9%,同时将能源销售价格保持在当前特定生产成本以下。该分析与所检查系统的经济评估相结合。事实证明,对于 Symi 和 Astypalaia 来说,只要土地形态适合安装 PHS,风能-PHS 仍然是一个有竞争力的替代方案,而对于 Kastelorizo 来说,风能-p/v 电池则是最佳选择。只有在 PHS 支持下,才能实现 99.9% 的年 RES 渗透率;使用电化学电池,年 RES 渗透率可达到 79.9% 至 91.1%。电力销售价格在 199 至 349 欧元/千瓦时之间,回收期在 5 至 9 年之间,确保了经济可行性。26
NSi83085 是一款基于 NOVOSENSE 数字隔离技术的高可靠性隔离式半双工 RS-485 收发器,而 NSi83086 是一款隔离式全双工 RS-485 收发器。两款器件均通过 UL1577 安全认证,支持 5kV rms 绝缘耐压,同时在低功耗下提供高电磁抗扰度和低辐射。
• 替代高性能光耦合器 • 数据速率:80 M 波特,典型值 ISO150 是 2 通道、电气隔离的数据耦合器,典型数据速率为 80M 波特。 • 低功耗:每通道 25 mW,每个通道都可以单独编程为在任一方向传输数据。 • 两个通道,每个通道都是双向的,数据通过高压 0.4 pF 电容器耦合互补脉冲跨隔离栅传输。接收器电路将脉冲恢复到标准逻辑电平。差分信号传输可抑制隔离模式电压瞬变 • 每通道低成本高达 1.6 kV/µ s • 采用 SO 封装 ISO150 避免了光耦合器常见的问题。光隔离耦合器需要高电流脉冲,并且必须考虑到 LED 老化。ISO150 的 Bi-CMOS 电路以每通道 25 mW 的功率运行 • A/D、D/A 转换的数字隔离。• 隔离的 RS-485 接口 ISO150 采用 SO-28 封装,规格为 • 多路复用数据传输,工作温度范围为 –40°C 至 85°C。• 隔离的并行到串行接口 • 测试设备 • 微处理器系统接口 • 隔离的线路接收器 • 接地环路消除
简介:随着威胁人类健康的多药耐药细菌的出现,越来越多地探索了自然环境的新型抗菌素化合物。tasik cermin是一个完全被喀斯特塔和山丘所覆盖的湖泊,缺乏水的流入或流出,使其成为一种贫营养环境,营养有限。微生物之间的竞争增加会导致产生抗菌化合物,从而抑制其竞争者的生长。因此,这项研究的目的是评估来自tasik cermin的细菌分离株的抗菌活性,并确定最耐药的分离株。方法:针对五种测试细菌测试了分离株:S型金黄色葡萄球菌,枯草芽孢杆菌,肺炎链球菌,大肠杆菌和proteus fulgaris通过临时筛查,通过垂直筛查,次要筛选,次要筛选,次要筛查,次要筛查,然后是次要的,然后通过麦克比和MBC和抗抗性识别cocteria识别了colocileia。结果:结果表明,只有一个分离株(分离株TC1A)能够显示出针对P. p. p. p. p. p. p. p. p. p. p. p. niae的潜在抗菌活性。通过通过琼脂井扩散法进行二次筛选进一步测试,并在P. p. p. p. p. p. p. p. fulgaris(14.97±0.05),大肠杆菌(9.23±0.25)和肺炎链球菌(14.93±0.12)上观察到了抑制区。通过单向方差分析和Tukey测试方法的统计分析方法表明,与肺炎链球菌和肺炎链球菌相比,大肠杆菌的抑制区显着差异。分子鉴定表明,分离物TC1A被鉴定为Achromobacter sp。具有97.68%的相似性百分比。结论:这一发现表明,来自未探索区域的细菌分离物具有产生新型抗菌化合物的潜力。马来西亚医学与健康科学杂志(2023)19(SUPP18)36-45。 doi:10.47836/mjmhs19.s18.6马来西亚医学与健康科学杂志(2023)19(SUPP18)36-45。 doi:10.47836/mjmhs19.s18.6
摘要 具有木质素解聚、分解代谢或两者兼有能力的新型细菌分离物可能与木质纤维素生物燃料应用有关。在本研究中,我们旨在识别能够解决微生物介导的生物技术所面临的经济挑战(例如需要曝气和混合)的厌氧细菌。利用从温带森林土壤中接种并在缺氧条件下以有机溶剂木质素作为唯一碳源进行富集的菌体,我们成功分离出一种新型细菌,命名为 159R。根据 16S rRNA 基因,该分离物属于 Bruguierivoracaceae 科的 Sodalis 属。全基因组测序显示基因组大小为 6.38 Mbp,GC 含量为 55 mol%。为了确定 159R 的系统发育位置,使用 (i) 其最亲属的 16S rRNA 基因、(ii) 100 个基因的多位点序列分析 (MLSA)、(iii) 49 个直系同源群 (COG) 结构域簇和 (iv) 400 个保守蛋白质重建了它的系统发育。分离株 159R 与枯木相关的 Sodalis 行会密切相关,而与采采蝇和其他昆虫内共生体行会关系较弱。估计的基于基因组序列的数字 DNA-DNA 杂交 (dDDH)、基因组保守蛋白质百分比 (POCP) 以及 159R 与 Sodalis 进化枝物种之间的比对分析进一步支持分离株 159R 属于 Sodalis 属的一部分和 Sodalis ligni 的一个菌株。我们建议将之命名为 Sodalis ligni str。 159R (=DSM 110549 = ATCC TSD-177)。
简介:洪水可能导致土壤中的微生物种群从一个区域转移到另一个区域。放线菌是一种土壤微生物,由于其产生次级代谢物的能力,其商业价值最高。这项研究旨在阐明从洪水和未洪水区域分离的放线菌的抗菌活性。方法:土壤样品是从吉兰丹州达蓬市的洪水泛滥地区和凯兰丹耶利(Jeli)的未洪水地区收集的。使用三种分离方法分离放线菌;超声处理,离心和氯胺T。根据其生长模式(孢子形成),菌落颜色,空中和底物菌丝色以及生长培养基中的可溶性色素形成,筛选了分离的菌株的形态特征。在形态上不同的菌株针对大肠杆菌和白色念珠菌的抗菌和抗真菌活性进行了测试。结果:从土壤样品中分离出970个放线菌菌株(来自洪水的570个菌株和未淹没土壤的400株)。在形态上只有281个菌株是不同的。三十个放线菌菌株的抗菌活性和抗真菌活性。其中十七个抑制了至少一种测试微生物。结论:总而言之,我们的观察结果表明,从洪水泛滥的地区获得的土壤样品显示出各种各样的放线菌,从其形态学特征可以明显看出。这一发现表明,与非洪水土壤面积相比,洪水泛滥的土壤区域具有更高的放线菌。此外,我们发现57%的测试放线菌菌株对至少一种测试有机体表现出活性,表明它们的未来研究潜力。马来西亚医学与健康科学杂志(2023)19(SUPP9):42-49。 doi:10.47836/mjmhs.19.s9.7马来西亚医学与健康科学杂志(2023)19(SUPP9):42-49。 doi:10.47836/mjmhs.19.s9.7