图1。示意图(简化)CO 2(左)和COS(右)扩散途径成C 3叶片的表示,包括大气中这两种物种的摩尔级分(C A),细胞间空间(C I),Mesophyll细胞(C M),CO 2,CO 2,CO 2,CO 2,CO 2,氯Pllast(C C)。核糖-1,5-二甲氧醇羧化酶氧化酶(Rubisco,叶绿体内)和碳酸酐酶(CA,仅右图)催化CO 2和COS固定。
1在2017年至2019年之间进行了IMS,在甲状腺切除术之前的两个时间点进行了摄取7定量:早期和晚期。图像由两名盲医生分析8个结果:11个结节是恶性肿瘤,组织病理学是23个良性。在两个时间点,良性的平均吸收10值低于恶性结节:8.7±4.1 11对12.9±3.5(p = 0.005);晚期,5.3±2.7对7.7±1.1(p = 0.008)。观察者12的可重复性非常好。良性的类内相关系数为0.86,早期读数的恶性病变为13 0.92,在14个后期读数中分别为0.94和0.85。分别排除后期阅读的最佳截止值为5.9,分别为15个敏感性,特异性,正预测价值,负预测值和16的准确性,100%,65.2%,60%,100%,100%和77.1%。17结论:尽管有一些研究局限性,但对99M TC-MIBI甲状腺的定量分析18闪烁显像具有良好的可重复性,这可能有助于排除非19个非19个诊断或不确定的甲状腺结节的恶性肿瘤,从而减少20例接受不必要的手术的患者的数量,从而减少了不必要的手术。21 22Résumé23
https://doi.org/10.5194/essd-2024-171预印本。讨论开始:2024年8月12日C⃝作者2024。cc by 4.0许可证。
摘要。Dansgaard – Oeschger(D – O)事件,千禧一代的气候气候振荡(在高北纬度地区的幅度高达10–15℃)之间发生在整个海洋同位素阶段3(MIS3; 27.8-59.4 KA)期间。到目前为止,气候建模统一无法回答我们的气候模型是否太稳定而无法类似D – O事件的问题。为了解决这个问题,本文为一般循环模型的MIS3 D – O协议奠定了基础,该协议在国际气候变化小组(IPCC)评估中使用。我们回顾以下内容:D – O术语,在这些IPCC级模型(过程和已发布的例子)中模拟D – O事件的社区进展以及有关发生D – O事件的边界条件的证据。我们发现,没有模型在前工业条件下表现出D – O样行为。一些但不是全部,模型在MIS3和/或完整冰川条件下表现出D – O样振荡。温室气体和冰盖配置至关重要。但是,大多数模型没有运行足够长的持续时间的模拟,以确保在MIS3或完整冰川状态下哪些模型显示出D – O样行为。我们提出了34 ka的MIS3基线协议,该方案具有低倾斜值,中度至低的MIS3温室气值以及中间的冰盖构造,我们的评论表明,这最有利于模型中的D – O样行为。本综述提供了使用共同框架调查MIS3 D – O振荡的建模组,该框架的目的是(1)最大化我们还为第二次淡水(海因里希事实至关重要的)实验提供了原始的Col,因为以前的工作表明,这种变体可能有助于在模型中预处理一个状态,这有利于D – O事件。
硅稳定的同位素比(表示为δ30Si)在生物二氧化硅中已被广泛用作海洋和湖泊环境中过去和现在的生物地球化学循环的代理,尤其是营养利用重建。对出版趋势的分析表明,在过去五年中,δ30Si在第四纪科学问题上的应用大幅下降。同时随着δ30SI代理应用的减少,我们正在了解更多有关其复杂性的信息:扩大的工作是突出了用于应用基于δ30Si的偏见的偏见,警告或并发症,用于沉积物记录。这些包括物种特异性硅同位素分馏因子的演示(即“重要效应”)或Fe或其他痕量金属影响硅同位素分馏的潜力。其他人推断出生物二氧化硅溶解的潜力改变了初始δ30Si值,或者通过早期的成岩化过程质疑初始δ30Si的保存。另一个受到更多关注的挑战是围绕将δ30Si值解散到反映生物逻辑生产力的信号中,并反映了由全系统和/或循环变化驱动的溶解硅δ30Si的变化。最后,许多研究集中在分析困难上,尤其是在样本制备过程中,与实现和证明污染物的无污染物二氧化硅有关。这些挑战使我们认为第四纪科学界正在远离硅同位素代理,因为他们对其可靠性和实用性失去了信心。在此关注硅藻 - 湖泊和海洋中的主要生物启示剂 - 我们合成了理解基于δ30SI的差异和警告的进展,以回答是否保证了基于δ30Si的基于δ30Si基于δ30Si的季节。我们建议,通过一些简单的步骤可以容易实施,并且随着关键知识差距的缩小,没有理由相信硅同位素在第四纪科学中没有任何希望的未来。
稳定同位素分析是一种相对测量。精度远高于准确度,因此必须相对于参考进行细微的同位素差异。现代质谱仪可以常规测量气体的 18 O 值,精度为 0.01‰。这比 VSMOW 的 18 O/ 16 O 比率的精度高 20 倍(Baertschi 1976)。正是出于这个原因,与大多数分析测量一样,同位素分析是相对于标准报告的。稳定同位素界面临的问题是,使用不同的技术测量不同的材料,并且很难直接比较它们。人们做出了巨大的努力,将不同类型的分析调整到同一尺度,以便可以直接比较在不同实验室收集的不同材料的数据。对于传统的 18 O 分析,围绕共同标准的形成需要几十年的时间。陆地材料的三重氧同位素研究(18 O 和 17 O)是一门相对较新的学科,标准化协议直到最近才达到高度一致。在本章中,我们首先考虑已建立的 18 O/ 16 O 比率标准化的历史路径。然后讨论将标准化扩展到 17 O/ 16 O,目的是为常用参考材料提供一套统一的标准值。
同位素纯化半导体具有更高的热导率(κ),因此散热性能可能比天然的、同位素混合的半导体更好。但对于室温下的 Si 来说,这种好处很低,块状 28 Si 的 κ 仅比块状天然 Si(nat Si)高 ∼ 10 %。我们发现,与这种块体行为形成鲜明对比的是,28 Si(99.92% 富集)纳米线的 κ 比具有相似直径和表面形貌的天然 Si 纳米线高 150 %。使用第一性原理声子色散模型,这种巨同位素效应归因于天然 Si 纳米线中同位素散射和声子表面散射的相互增强,并通过声子传输到原生非晶态 SiO 2 壳层而相关。该信发现了迄今为止报道的所有材料中室温下κ同位素效应最强的材料,并启发了同位素富集半导体在微电子领域的潜在应用。
ICP-MS被认为是硼同位素分析的强大技术。对于最苛刻的古透明应用,高分辨率的多策略ICP-MS(MC-ICP-MS)通常是选择的技术,可为硼提供精确和准确值,降低到0.2 - 0.4‰。6个四极杆ICP-MS(Q-ICP-MS),有时也将与激光消融结合使用,用于各种应用程序,对精确性和准确性的要求较小。然而,Q-ICP-MS也可以通过碰撞阻尼来消除常规测量中的许多噪声,从而产生接近理论上可能的精度的精确度。7这需要使用适当的仪器硬件和分析条件,如本申请注释中进一步讨论。因此,尽管本质上是一种顺序的仪器,但Q-ICP-MS提供的性能可以接近MC-ICP-MS。即使对于苛刻的应用程序,也可以获得足够的精度,并且分析适合于多策略仪器成本的一小部分。具有Q-ICP-MS的用途更广泛,并且不仅用于同位素比测量值,因此对同位素比率能力的欣赏可以将高质量的同位素比分析带入具有不同分析需求的实验室的范围。虽然Q-ICP-MS已成功用于硼同位素比分析8,但碰撞阻尼很少在已发表的文献中使用,因此发表的结果可能并不能反映Q-ICP-MS的真正潜力。本研究的目的是在充分利用仪器的功能时,使用Perkinelmer的Nexion®ICP-MS研究Q-ICP-MS的性能。
“美国能源部科学办公室 (SC) 致力于营造安全、多元、公平和包容的工作、研究和资助环境,重视相互尊重和个人诚信。有效管理和促进多元化和包容性的工作场所,重视和赞美多元化的人员、思想、文化和教育背景,是实现 SC 使命的基础。参与 SC 赞助活动的科学界应尊重他人、恪守道德、专业素养。