现代候选候选物的现代平台,例如被困的离子或神经原子,可以通过穿梭量允许遥远的物理速度之间的长距离连通性。这为远处逻辑量子位之间的横向逻辑cnot门开辟了道路,从而在该控制和目标逻辑Qubits上的每个相应的物理量子之间执行物理cnot门。但是,横向cnot可以从一个逻辑量子频率传播到另一个逻辑量子,从而导致logimal Qubits之间的误差相关。我们已经开发了一个多通迭代解码器,该解码器分别解码每个逻辑量子量子,以处理这种符合的误差。我们表明,在电路级别的噪声和O(1)代码周期下,阈值仍然可以持续存在,并且逻辑错误率将不会显着分级,与p⌊d
现代候选候选物的现代平台,例如被困的离子或神经原子,可以通过穿梭量允许遥远的物理速度之间的长距离连通性。这为远处逻辑量子位之间的横向逻辑cnot门开辟了道路,从而在该控制和目标逻辑Qubits上的每个相应的物理量子之间执行物理cnot门。但是,横向cnot可以从一个逻辑量子频率传播到另一个逻辑量子,从而导致logimal Qubits之间的误差相关。我们已经开发了一个多通迭代解码器,该解码器分别解码每个逻辑量子量子,以处理这种符合的误差。我们表明,在电路级别的噪声和O(1)代码周期下,阈值仍然可以持续存在,并且逻辑错误率将不会显着分级,与p⌊d
然而,在复杂系统开发环境中,敏捷系统工程的成熟度并不高,人们只能找到一些较差且较新的参考资料。首次将敏捷框架扩展到系统开发环境的尝试似乎只能追溯到 2012 年底,当时 IBM 研究员 Hazel Woodcock 提议重新审视系统工程的敏捷宣言(参见 [76])。在这一开创性举措的指导下,国际系统工程理事会 (INCOSE) 的一个工作组于 2014 年开始研究敏捷系统工程(参见 [38]),并定期撰写有关该主题的文章,特别是 B.P. 出版的第一本教科书。Douglass 于 2015 年底出版(参见 [28])。最后,还应指出 SAFe 团队最近的一次尝试——据我们所知,可以追溯到 2017 年 10 月——提出了基于模型的系统工程敏捷框架的草图。然而,这最后一项提议被简化为非常少的想法,根本没有详细内容,显然不是很有效,也没有得到实际系统开发实验回报的支持(参见 [58])。
1新加坡新加坡国立大学药学系; 2新加坡新加坡公爵医学院的卫生服务与系统研究; 3内科医学居住,新加坡,新加坡,新加坡; 4新加坡新加坡Singhealth区域卫生系统的人口卫生研究与实施中心; 5新加坡新加坡国立大学计算学院;新加坡新加坡新加坡总医院的6人口健康与综合护理办公室(PHICO); 7新加坡新加坡新加坡综合医院的家庭医学和继续护理部; 8新加坡新加坡的Outram社区医院急性和继续护理; 9新加坡新加坡新加坡的Singhealth Duke Nus家庭医学学术临床计划1新加坡新加坡国立大学药学系; 2新加坡新加坡公爵医学院的卫生服务与系统研究; 3内科医学居住,新加坡,新加坡,新加坡; 4新加坡新加坡Singhealth区域卫生系统的人口卫生研究与实施中心; 5新加坡新加坡国立大学计算学院;新加坡新加坡新加坡总医院的6人口健康与综合护理办公室(PHICO); 7新加坡新加坡新加坡综合医院的家庭医学和继续护理部; 8新加坡新加坡的Outram社区医院急性和继续护理; 9新加坡新加坡新加坡的Singhealth Duke Nus家庭医学学术临床计划
本演讲包含了根据《 1995年私人证券诉讼改革法》和其他联邦证券法的《安全港规定》的目的。使用诸如“可能”,“意志”,“应该”,“期望”,“预期”,“预期”,“相信”,“估计”,“目标”,“未来”,“未来”,“潜在”或“继续”等单词的使用,以及其他类似的表达方式以及其他类似的表达方式,旨在识别前瞻性陈述,尽管不是全部具有前瞻性的陈述,都包含这些识别的陈述。这些前瞻性陈述包括有关Voyager在其自己的产品开发计划中利用其示踪剂衍生的Capsids的能力以及进步其自己的产品开发计划的能力,包括确定每个计划的主要临床候选人; Voyager能够利用受体到其示踪剂衍生的Capsid家族的能力,以实现理性的Capsid设计并加快这些衣壳家族的演变;以及通过Voyager's及其合作者和合作伙伴的产品开发计划来建立人类概念证明和将临床前数据转化为人类的人类的概念证明。这些前瞻性陈述仅是预测,而Voyager实际上可能无法实现前瞻性陈述中披露的计划,意图或期望。所有前瞻性陈述都受风险和不确定性的影响,这些风险可能导致实际结果与Voyager预期的结果有实质性差异。任何前瞻性声明仅在本演示文稿发布到Voyager网站上的日期。这种风险和不确定性包括持续开发各种技术平台,包括Voyager的Tracer Capsid Discovery平台; Voyager的科学方法和计划发展进步以及关键研究组成部分的限制供应;吸引和保留有才华的承包商和员工的能力,包括主要的科学家和商业领袖;创建和保护知识产权的能力;现金资源的充分性;辉瑞和诺华许可期权协议和其他合作的开发,商业化,许可证和其他选择的可能性和时机; Voyager就可以接受的条款和第三方接受的条款协商和完成其他许可或协作协议的能力;由第三方合作党控制的计划的成功,在该政党中,Voyager保留了财务利益,以及Voyager的产品候选人的成功。这些陈述还受到了许多物质风险和不确定性的约束,这些陈述在Voyager最新向美国证券交易委员会提交的10-K表格的年度报告中所描述,其随后提交给美国证券交易委员会的文件进行了更新。Voyager不承担公开更新或修改任何前瞻性陈述的义务,无论是由于新信息,未来事件还是其他方式,除非法律要求。
计算和实验能力的提高正在迅速增加日常生成的科学数据量。在受内存和计算强度限制的应用中,过大的数据集可能会阻碍科学发现,因此数据缩减成为数据驱动方法的关键组成部分。数据集在两个方向上增长:数据点的数量和维数。降维通常旨在在低维空间中描述每个数据样本,而这里的重点是减少数据点的数量。提出了一种选择数据点的策略,使它们均匀地跨越数据的相空间。所提出的算法依赖于估计数据的概率图并使用它来构建接受概率。当仅使用数据集的一小部分来构建概率图时,使用迭代方法来准确估计稀有数据点的概率。不是对相空间进行分组来估计概率图,而是用正则化流来近似其函数形式。因此,该方法自然可以扩展到高维数据集。所提出的框架被证明是在拥有大量数据时实现数据高效机器学习的可行途径。
本文提出了一种在任务数量超过代理数量 5-20 倍的情况下 MRS 组中的分工迭代方法。该方法基于选择任务集群和由 MRS 组中的代理进行集体决策的迭代程序。提出了迭代方法的三种变体,不同之处在于代理选择集群执行任务的顺序。该方法的类似物是集体决策分工的贪婪算法。根据对不同数量的代理的模拟结果,与贪婪算法相比,在任务集群数量不同的情况下,5 个代理的结果可以提高 18%,7 个代理的结果可以提高 35%,10 个代理的结果可以提高 15%,15 个代理的结果可以提高 12%。
摘要:当代计算机系统的可用性引发了人们对可用性在系统设计过程中所扮演角色的关注。在本章中,我们批评了由充分阐述的设计替代方案的可用性分析组成的方法。原则上,这种方法无法支持最初产生替代设计的设计过程。我们开发了一种基于可用性规范的方法:针对典型用户执行其预计使用系统时所执行的典型任务,提供精确、可测试的性能目标陈述。反过来,必须将这些因素纳入他们的行为先决条件(我们称之为子技能)中,以便查明和解决设计中的特定问题。与功能规范一样,可用性规范及其所暗示的子技能被视为在整个设计过程中不断完善和改进。介绍了一个来自文本编辑领域的扩展示例。
但如何才能实现这一点呢?Alexander 建议可以开发正式的分析方法来指导无意识的分解(例如,1964:附录 2)。他的方法是将设计表示为一个互连点的空间:每个点都是一个规范,其与其他点的连接程度和特征模拟了相应规范之间的关系。此表示中高度互连的点的群集对应于高度相互关联的规范的集合。Alexander 希望开发一种正式的方法,将整个规范空间划分为这种高度互连的群集。在此基础上开发的详尽划分将是设计问题的无意识分解,因为它将完全基于规范之间的关系,而不是基于先验的分类和分组。