Andrea Alberti(Garching)Nayden Needev(索非亚)Christina Andreeva(Sofia)Georgi Nenchev(New Hampshire)Julian Dimitrov(Sofia)Jan Oxford(牛津)(牛津)Radim Filip(牛津)Radim Filip Orozco Ruiz(帝国)Barry Garraway(苏塞克斯)Christian Ospelkaus(Hannover)Genko Genov(Ulm)Sorin Paraoanu(Aalto)Simona Grigorova(Sofia)Kremena Parashkevova(Sofia) Roberto Grimaudo(Catania)Andon Rangelov(Sofia)Stying St Stying的Tom Rieckmann(Rostock)Thomas Halfmann(Darmstadt)Andreas Ruschhaupt(Cork)Meri Hari Hari Hariyhyunyan(Dijon) Georgii Semin(Dijon)Winni Hensinger(Sussex)Lidya Slavova(Sofia)Hristina Hristova(Sofia)Luk'a Slodicaka(Olomouc)Branislav Ilich(Sofia) Ivaylo Ivanov(索非亚)Niklas Stewen(Darmstadt)Niels Joseph(Darmstadt)Yannick Strocka(柏林)Geediminas Juzelias(Vilnius)Hristo Tonchev(Sofia) Boyan Torosov(1Qbit Vancouver)Jukka Kiukas(Abrystwyth)Vasil Vasilev(Sofia)Nadezhda Markova(Sofia)Nikolay Vitanov(Sofia)Ivo Mihov(Sofia)(Sofia)德国蒙特梅扎尼(Lorraine)Kaloyan Zlatanov(Sofia)Rodolfo Mu〜noz-Rodriguez(Siegen) div>
[ahak22] V´ıctor Hugo Almendra-Hern´andez,Gergely Ambrus和Matthew Kendall,通过稀疏近似,离散和计算几何学定量定理,分离和计算几何(2022),1-8。[BH94] IMRE BARANY和ALAD´AR HEPPES,在平面中定量的Steinitz定理的确切常数,离散和计算几何学12(1994),否。4,387–398。[BJB + 04] K´aroly bouthoczky Jr,K。Boutoczky等人,有限的包装和覆盖,第1卷。154,剑桥大学出版社,2004年。[bkp82]1,109–114。[BP09] K. M. Ball和M. Prodromou,Vaaler定理的敏锐组合版本,伦敦数学学会公报41(2009),第1期。5,853–858。 [BRA97] Peter Brass,在平面,离散和计算地理的定量Steinitz定理上17(1997),否。 1,111–117。 [CAR11]康斯坦丁·卡拉斯(Constant Carath´eodory),`uber den variabilit - der fourier'schen konstanten von von potitiven von potitived harmonischen funktionen,rendiconti del circolo matematico di palermo(1884-1940)32(1911)32(1911),否。 1,193–217。 [dllhrs17] Jes'us a de loera,Reuben N La Haye,David Rolnick和Pablo Sober´on,用于连续参数的定量组合几何学,离散和计算几何学57(2017),否。 2,318–334。 [in22] Grigory Ivanov和M´arton Nasz´odi,一种定量的Helly-type定理:同型中的遏制,《暹罗》,《离散数学》杂志36(2022),否。 2,951–957。 3,295–318。5,853–858。[BRA97] Peter Brass,在平面,离散和计算地理的定量Steinitz定理上17(1997),否。1,111–117。[CAR11]康斯坦丁·卡拉斯(Constant Carath´eodory),`uber den variabilit - der fourier'schen konstanten von von potitiven von potitived harmonischen funktionen,rendiconti del circolo matematico di palermo(1884-1940)32(1911)32(1911),否。1,193–217。[dllhrs17] Jes'us a de loera,Reuben N La Haye,David Rolnick和Pablo Sober´on,用于连续参数的定量组合几何学,离散和计算几何学57(2017),否。2,318–334。[in22] Grigory Ivanov和M´arton Nasz´odi,一种定量的Helly-type定理:同型中的遏制,《暹罗》,《离散数学》杂志36(2022),否。2,951–957。3,295–318。[KMY92] David Kirkpatrick,Bhubaneswar Mishra和Chee-keng Yap,定量Steinitz的定理,应用于多填充,离散和计算几何7(1992),否。 div>[Ste13] Ernst Steinitz,条件行和凸系统。
1。Rowe T W,Katzourou I K,Stevenson-Hoare J O,Bracher-Smith M R,Ivanov D K,Escott-Price V. Alzheimer氏病的终身风险预测机器学习:系统评价。大脑社区2021; doi:10.1093/ braincomms/ fcab246。2。Malcangi M.基于AI的方法和技术,用于开发可穿戴设备,用于假肢和退化性疾病的预测。方法mol biol 2021; 2190:337–354。3。Chander N G,Reddy D V.牙齿牙齿牙齿追踪器,适用于阿尔茨海默氏症患者。J印度假肢2023年; 23:96–98。4。Amini M,Pedram M M,Moradi A,Jamshidi M,Ouchani M. Gc-Cnnnet:使用遗传和卷积神经网络诊断出使用PET图像诊断阿尔茨海默氏病。计算Intell Neurosci 2022; doi:10.1155/2022/7413081。5。Rabaey J M.脑机界面作为极端微型化的新边界。pp 19-24。在欧洲固态设备研究会议论文集(Essderc 2011)。2011。6。Vidal J J.朝着直接的脑部计算机通信。Annu Rev Biophys Bioeng 1973; 2:157–180。
循环游离 DNA (cfDNA) 可揭示生理和病理状况,包括怀孕(Barrett 等人,2011 年)、癌症(Heitzer 等人,2015 年)、炎症(van der Meer 等人,2019 年)和移植排斥(Bloom 等人,2017 年;Thongprayoon 等人,2020 年)等。同时,由于 cfDNA 浓度低且易受分析前阶段不一致的影响,包括受损血细胞中的高分子量 (HMW) DNA 的人工污染,从而掩盖天然 cfDNA 特征(Bartak 等人,2019 年;Meddeb 等人,2019 年;van der Pol 等人,2022 年),因此 cfDNA 分析在技术上具有挑战性。具体而言,游离 DNA 片段的长度和端点分布似乎与来源细胞中的染色质结构有关,从而将 cfDNA 碎片特征与基因组的功能状态联系起来。高通量测序广泛研究了这一现象,提供了一种通用的方法框架(Ivanov 等人,2015 年;Snyder 等人,2016 年;Cristiano 等人,2019 年;Lo 等人,2021 年)。同时,基于 PCR 的方法在某些 cfDNA 分析应用中仍然广泛使用且更具成本效益。它们中的大多数侧重于样品质量控制,并针对各种蛋白质编码基因(Devonshire 等人,2014 年;Fernando 等人,2018 年;Alcaide 等人,2020 年)或
作者的完整列表:埃卡特琳娜·多尔戈波洛娃(Dolgopolova); Los Alamos国家实验室,材料物理和应用部:Dongfang综合纳米技术中心; Los Alamos国家实验室,材料物理和应用部:纳米技术中心Hartman,S;洛斯阿拉莫斯国家实验室,约翰MST-8瓦;洛斯阿拉莫斯国家实验室,材料和应用部综合纳米技术RIOS,Carlos的材料和应用部;马萨诸塞州理工学院材料科学与工程系HU,Juejun;马萨诸塞州理工学院材料科学与工程系Kukkadapu,Ravi;太平洋西北国家实验室,乔安娜EMSL卡森;洛斯·阿拉莫斯国家实验室,里亚化学司,洛斯;德克萨斯大学达拉斯分校,安东(Anton)物理马尔科(Malko);德克萨斯大学达拉斯大学,阿纳斯塔西娅物理学布雷克(Blake); Los Alamos国家实验室,材料物理和应用部:Sergei综合纳米技术中心;洛斯·阿拉莫斯国家实验室,化学部罗斯利克,奥利克西;福特汉姆大学,物理Piryatinski,安德烈; Los Alamos国家实验室,理论部Htoon,Han; Los Alamos国家实验室,MPA-Cint Chen,Hou-tong;洛斯阿拉莫斯国家实验室,纳米技术综合中心Pilania,Ghanshyam;詹妮弗(Jennifer)霍林斯沃思(Hollingsworth)的洛斯阿拉莫斯国家实验室;洛斯阿拉莫斯国家实验室,a。材料物理和应用部:集成纳米技术中心
11) Büchel, J., Mingard, C., Takhaveev, V., Reinert, PB, Keller, G., Kloter, T., Huber, SM, McKeague, M. 和 Sturla, SJ, 2023. 胶质母细胞瘤药物替莫唑胺的 O6-甲基鸟嘌呤单核苷酸分辨率基因组图谱。bioRxiv,2023.12.12.571283。正在《核酸研究》中审查。10) Mingard, C., Battey, JN, Takhaveev, V., Blatter, K., Hürlimann, V., Sierro, N., Ivanov, NV 和 Sturla, SJ, 2023. 通过吸烟的各个成分剖析癌症突变特征。化学毒理学研究,36(4),第714-123页。9)Jiang, Y., Mingard, C., Huber, SM, Takhaveev, V., McKeague, M., Kizaki, S., Schneider, M., Ziegler, N., Hurlimann, V., Hoeng, J., Sierro, N., Ivanov, NV 和 Sturla, SJ,2023. 人类基因组中烷基化的量化和映射揭示了突变特征的单核苷酸分辨率前体。ACS Central Science,9(3),第362-372页。 8) Takhaveev, V.、Özsezen, S.、Smith, EN、Zylstra, A.、Chaillet, ML、Chen, H.、Papagiannakis, A.、Milias- Argeitis, A. 和 Heinemann, M., 2023. 生物合成过程的时间分离是造成芽殖酵母细胞周期中代谢振荡的原因。《自然代谢》,5(2),第 294-313 页。7) Ortega, AD#、Takhaveev, V.#、Vedelaar, SR、Long, Y.、Mestre-Farràs, N.、Incarnato, D.、Ersoy, F.、Olsen, LF、Mayer, G. 和 Heinemann, M., 2021. 一种用于报告糖酵解通量的果糖-1,6-双磷酸盐合成 RNA 生物传感器。 Cell Chemical Biology, 28(11), pp.1554-1568. 6) Monteiro, F., Hubmann, G., Takhaveev, V., Vedelaar, SR, Norder, J., Hekelaar, J., Saldida, J., Litsios, A., Wijma, HJ, Schmidt, A. 和 Heinemann, M., 2019. 使用正交合成生物传感器测量单个酵母细胞中的糖酵解通量。分子系统生物学, 15(12), p.e9071。 5) Leupold, S., Hubmann, G., Litsios, A., Meinema, AC, Takhaveev, V., Papagiannakis, A., Niebel, B., Janssens, G., Siegel, D. 和 Heinemann, M., 2019. 酿酒酵母在其复制生命周期中经历不同的代谢阶段。Elife, 8, p.e41046。4) Takhaveev, V. 和 Heinemann, M., 2018. 克隆微生物种群中的代谢异质性。Current opinion in microbiology, 45, pp.30-38。 3) Filer, D., Thompson, MA, Takhaveev, V., Dobson, AJ, Kotronaki, I., Green, JW, Heinemann, M., Tullet, JM 和 Alic, N., 2017. RNA聚合酶III限制TORC1下游的寿命。《自然》,552(7684),第263-267页。2) Suplatov, D., Kirilin, E., Arbatsky, M., Takhaveev, V. 和 Švedas, V., 2014. pocketZebra:一种通过对不同蛋白质家族的生物信息学分析自动选择和分类亚家族特异性结合位点的网络服务器。《核酸研究》,42(W1),第W344-W349页。 1) Suplatov, D., Kirilin, E., Takhaveev, V. 和 Švedas, V., 2014. Zebra:用于对不同蛋白质家族进行生物信息学分析的网络服务器。《生物分子结构与动力学杂志》,32(11),第 1752-1758 页。研究资助
∗我们非常感谢Andreas Beyer,Giorgia Barboni,Ricardo Correa,Ricardo Correa,Hans Degryse,Klaus Duellmann,Bill English,Ivan Ivanov,Tristaniov,Tristan Jourde,Moqi Groen-groen-Xu,Reint Gropp,Reint Gropp,Reint Gropp,Reint Gropp,Nadja grop,NadjaGunster,thomas thomas thoms @uns&saver kings @ saver kings @ kids @ kids @ kids kings kids x. Koetter, Philipp Klein, Kai Li, Jose Lopez, Michala Marcussen, Christoph Meinerding, Ralf Meisenzahl, Louis Nguyen, Steven Ongena, Pia Pinger, Andreas Pfingsten, Martin Oehmke, Larissa Schaefer, Merih Sevilir, Christoph Schneider, Alexander Schulz, Zacharias Sautner, Ulrich瓦格纳(Wagner),夏(Shuo Xia)以及英格兰银行,CRC撤退,德意志联邦银行(Deutsche Bundesbank),欧洲央行银行监督研究会议,ECB-IMF宏观审慎政策与研究会议,欧洲央行 - IMF皇家银行的EFI网络会议,MACRONERISER of MACRO的FIN,EFI网络会议的EFI网络会议,欧洲央行 - IMF批评政策和研究会议的首届欧洲央行研究会议,欧洲央行 - IMF宏观审慎政策和研究会议,欧洲央行及以储备金的福特(Macro)的福特(MACRO)的fin,柏林DIW的经济历史,金融研讨会上的沃里克妇女,圣安德鲁斯大学,冲浪跨机构研讨会,穆斯特大学,诺丁汉大学和图宾根大学。通过德国研究基金会合作研究中心TR 224(项目A02)获得的财务支持非常感谢。†科隆大学‡哈勒经济研究所(IWH)和弗里德里希·席勒大学(Friedrich Schiller University
人工智能(AI)的出现已经迎来了各个行业的效率和准确性的新时代,库存管理和需求预测处于这些进步的最前沿。传统库存管理技术通常依赖于历史数据和简单的统计模型,在解决当代市场的动态和复杂性方面缺乏(Chopra&Meindl,2016年)。AI具有先进的算法和机器学习能力,为这些关键业务功能提供了一种变革性的方法。本文探讨了AI技术在优化库存管理和预测客户需求方面的集成。AI增强库存管理涉及应用各种AI技术,例如机器学习,自然语言处理(NLP),计算机视觉和机器人技术工艺自动化(RPA)(RPA)(Ivanov等,2017)。机器学习算法分析了大量的历史数据,以识别模式和趋势,从而可以在库存水平上进行更准确的预测和调整。NLP流程从社交媒体和客户评论等来源提供非结构化数据,以更深入了解市场趋势和客户偏好(Cambria&White,2014年)。计算机视觉技术有助于实时监视库存水平并通过视觉数据识别差异,而RPA自动化了重复的任务,例如订单处理和库存跟踪,从而降低了人为错误和提高效率(Aguirre&Rodriguez,2017年)。本文重点介绍了通过AI实施实现的预测准确性和库存周转率的重大改善,并讨论了对供应链管理的未来影响。
私营部门。因此,链接FSC也不能免疫这种放缓(Reardon等,2020)。由于运动的豁免以及导致客户恐慌购买和储存行为的谣言,因此,观察到对货架稳定的食品的需求显着增加,因此,这些产品的储备(Kamble and Mor,2021; Troskie; Troskie,2020年)。印度社会一部分收入的损失也赞成这种态度,因此,食品价格急剧上涨。政府机构和一些非政府组织不断努力弥补这一损失,并定期供应这些主要必要产品。印度政府已将170万印度卢比的人释放给不同州,为贫困和移民工人寻求资金(Ranjith and Varma,2020年)。印度粮食经济占85%,取决于微型,中小型企业(MSMES),由202020年5月12日的印度荣誉总理宣布了2000万印度卢比的200万印度卢比的巨型救济经济包(约10%的印度GDP)。此包装支持相关的农业食品农民,劳动者,家庭手工业和中产阶级人士。农业和粮食安全存在很大的风险,因为消费的食品中有92%是从FSC购买的,并通过私营部门提供给消费者。需要适当的FSC规划和管理,以避免由于19020年的粮食危机而避免粮食危机(Reardon等,2020; Stauffer等,2018; Zurayk,2020; Ivanov和Dolgui,2020; Carberry and Padhee,2020)。
当您查看每年10月获得最多三个科学家奖励的诺贝尔奖时,奖励引文中总会有很多贡献。也有许多其他贡献为开创性的发现铺平了道路,或者将这些发现带到了惊人的新方向,以至于无法列出。今年的诺贝尔物理学奖授予皮埃尔·阿戈斯蒂尼,费伦斯·克劳斯(Ferenc Krausz)和安妮·霍利尔(Anne L'Huillier)“用于实验方法,为ICFO社区尤其令人兴奋,因为我们自己获得了奖项,这对ICFO社区来说尤其令人兴奋。ICFO小组领导人Drs。Jens Biegert和Maciej Lewenstein都是该领域的领导者,并在实验和理论上与获奖者合作。1994年的物理评论在诺贝尔文本中指出的合作,由莱恩斯坦,巴尔库,伊万诺夫,l'Huilier和Corkum合作,被引用了5000多次。同样,比格特通过该领域的一系列具有里程碑意义的论文做出了重大贡献,他在ICFO建立了世界领先的Attoscience基础设施,这是西班牙唯一同类的。诺贝尔在化学领域,授予Alexei Ekimov,Louis Brus和Moungi Bawendi“是为了发现和合成量子点”,这也是ICFO集团领导人Gerasimos Konstantatos的家中的,对使用量子发射的量子和量子构成了量子,并在量子上进行了多个不值得的贡献。