发动机333 P-Tier / 333 P-Tier SmartGrade™制造商和型号Yanmar 4TNV94FHT位移3.1 L(186.3 Cu。< / div>in。)非道路排放标准EPA最终第4 / EU级IV级额定发动机速度2,500 rpm缸4扭矩4扭矩上升39%,在1,700 rpm总额定额定功率(ISO 14396)80.9 kW(108.5 hp),2,500 rpm peeper,Is InterCohared peeper j1 peeper(108.5 hp) 78.9 kW(105.8 hp)在2,500 rpm空气清洁剂干燥双元峰值扭矩394 nm(290.6 ft.-lb.)在1,700 rpm冷却风扇型可变速度液压驱动标准/反向风扇驱动器驱动器可选动力总成泵轴向轴向活塞静液压旅行速度(续)控制电气2速2速度,高13.7 km/h(8.5 mph),弹性速度,弹性速度,2.9 km 5.9km。刹车底盘橡胶轨道轨道轨道带有可选的400毫米(15.8英寸)轨道36.3 kPa(5.3 psi)轨道宽度轨道辊(每侧)5三平滑骑行全钢标准标准450毫米(17.7英寸)滚筒可选400毫米(15.8英寸)轨道怠速(每侧)2双范围平滑乘坐全钢接地压力辊,标准450毫米(17.7英寸)具有标准450毫米(17.7英寸)的操作权重轨道5531千克(12,183磅)轨道32.8 kPa(4.8 psi)拖流努力5221 kgf(11,500 lbf)液压泵流量流液压马力流量(计算)标准95 l/m(25 gpm)标准38 kW(51.1 hp),高流量的总压167 L/m(44 gpm)高速公路(44 gpm)高度67 kpm c.44 kpm c。 132 kPa (3,500 psi) Cylinders Type John Deere heat-treated, chrome-plated, polished cylinder rods, hardened steel (replaceable bushings) pivot pins Electrical Voltage 12 volt Lights Halogen: 2 front and 1 rear standard / Battery Capacity 950 CCA deluxe LED: 4 front and 1 rear optional Alternator Rating 120 amp Serviceability Operator's Station Refill Capacity ROPS (ISO 3471) / fops(ISO 3449)结构,具有快速居式标准燃油箱136.3 L(36 gal。)< / div。
手稿于2022年12月16日收到;修订了2023年2月3日; 2023年2月7日接受。出版日期2023年2月20日;当前版本的日期2023年3月24日。这项工作得到了加拿大自然科学和工程研究委员会(NSERC)的部分支持;在加拿大第一研究卓越基金的一部分;在加拿大第一研究卓越基金的一部分是由Laboratoire纳米技术纳米纳斯特梅斯(LN2),该基金是法国 - 加拿大 - 加拿大联合国际研究实验室(IRL-3463),由中心由国家de la Recherche Scorentifique(CNRS),Universitedesitédesherbrooke,Unigabrooke,Comecomeitififique(CNR)中心资助和合作。 ÉcoleCentrale Lyon(ECL)和国家科学研究所(Institut National des Sciences)贴花(INSA)LYON;并部分由魁北克人的自然与技术(FRQNT)。本文的评论由编辑F. Bonani安排。(通讯作者:Pierre-Antoine Mouny。)Pierre-Antoine Mouny, Yann Beilliard, and Dominique Drouin are with the Institut Interdisciplinaire d'Innovation Technologique (3IT) and the Institut Quantique (IQ), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, Canada, and also with the Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463,3IT,Sherbrooke,QC J1K 0A5,加拿大(电子邮件:Pierre-antoine.mouny.mouny@usherbrooke.ca)。SébastienGraveine,Abdelouadoud El Mesoudy,RaphaëlDawant,Pierre Gliech和Serge Ecoffey与Interdistut Interdisci-Plinaire d'innovation D'innovation D'Innovation Technologique(3IT),Sherbrooke,Sherbrooke,Sherbrooke,Sherbrooke,Sherbrooke,QC J1K 0A 5,CANCALAINE,CANCALAITIE,以及CANCALATO,CANCARAITAN,以及CANCACATAINIIS Nanosystèmes(LN2),CNRS UMI-3463,3IT,Sherbrooke,QC J1K 0A5,加拿大。Marc-Antoine Roux与加拿大QC J1K 2R1的Sherbrooke大学量子研究所(IQ)一起。Fabien Alibart与加拿大Sherbrooke,Sherbrooke,Sherbrooke,Sherbrooke University Institute(3IT)的互助创新创新研究所,加拿大QC J1K 0A5,也与纳米技术实验室纳米系统(LN2)一起加拿大,还与法国59650 Villeneuve-d'ascq的电子,微电子学和纳米技术学院(IENN)一起。Michel Pior-Ladrière与纳米技术实验室纳米系统(LN2),CNRS UMI-3463,3IT,Sherbrooke,QC J1K 0A5,加拿大,以及与Sher-Brooke,Sherbrooke,Sherbrooke,Sherbrooke,QC j1 cancase cancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancancance of sherbrooke,QC J1K 0A5本文中一个或多个数字的颜色版本可在https://doi.org/10.1109/ted.2023.3244133上找到。<数字OBJET标识符10.1109/TED.2023.3244133
[J1] M. P. Bonkile和V. Ramadesigan,“使用基于物理的电池模型在独立的PV-Battery Hybrid Systems中使用基于物理的电池模型”,《储能杂志》,23,258-268,2019。[J2] M. P. Bonkile和V. Ramadesigan,“基于PV-Battery Hybrid Systems的物理模型:热管理和降解分析”,《储能杂志》,31,1014585,2020。[J3] M. P. Bonkile,A。Awasthi,C。Lakshmi,V。Mukundan和V.S.ASWIN“汉堡方程式的系统文献评论以及最近的进步”,Pramana-of Physics,90,69,2018。[J4] M. P. Bonkile,A。Awasthi和S. Jayaraj,“有或没有Hopf-Cole转换的汉堡方程的比较数值调查”,国际融合计算杂志,2(1),54-78,2016。[b1] M. P. Bonkile,A。Awasthi和S. Jayaraj,“基于用于修改的凯勒盒子方案的数值模拟:不稳定的粘性汉堡方程”,数学分析,应用程序及其应用及其应用及其应用程序,Springer(143)565-575-575,2015,M.P.15,2015 c1 [c1] [C1] [C1] [C1] [C1] [C1] [C1] [C1] [C1] [C1]] “ PV-Wind-Battery混合动力系统:使用P2D电池模型的电力管理控制策略”,第236电化学协会(ECS)会议,美国亚特兰大,2019年。[C2] M. P. Bonkile,V。Ramadesigan和S. Bandyopadhyay,“使用基于物理的电池模型在具有不确定性的混合动力系统中使用基于物理的电池模型”,第236届ECS会议,Atlanta USA,2019年。[C4] M. P. Bonkile,V。Ramadesigan和S. Bandyopadhyay,“使用基于物理模型的储能设计在独立的PV-Battery Hybrid Systems中使用物理模型”,印度印度Pandit Deendayal Petroleum University,Icteta 12 The Icteta,2019年,2019年。[C3] M. P. Bonkile和V. Ramadesigan,“使用基于物理的电池模型的独立光伏电池式混合系统建模”,第2届国际国际大会在印度的大规模可再生能源集成在印度和可再生能源部,印度新德尔希,2019年,印度和可再生能源部的大规模可再生能源整合。[C5] M. P. Bonkile,K。S。Pavan和V.Ramadesigan,“使用基于物理的电池模型的独立PV玻璃系统模拟”,计算科学研讨会,印度科学研究所(IISC)印度,2017年,2017年。[C6] M. P. Bonkile,A。Awasthi和S. Jayaraj,“基于与时间依赖边界条件的不稳定,二维的二维不同使用方程的隐式方案的数值研究”,第61 ISTAM,Vellore India,2016年。[C7] M. P. Bonkile,A。Awasthi和S. Jayaraj,“在Unsteady Burgers'方程式上的高阶时间集成算法的数值实施”,ICMMCS,印度技术学院Madras India India India,2014年,2014年。[C8] M. P. Bonkile,A。Awasthi和S. Jayaraj,“通过Mol on Mol on Steady Burgers'方程式实施了第四阶订单时间集成公式的数值”,印度ISTAM 59,2014年,ISTAM,2014年。
Jordan Cosio 2023-(Inria Grenible)想象。 博士Pierre-Brice Witer Jean-Eudes Ayilo 2023-(中央汤)不在。Jordan Cosio 2023-(Inria Grenible)想象。博士Pierre-Brice Witer Jean-Eudes Ayilo 2023-(中央汤)不在。
