江苏杰杰微电子(又名 JJM)的汽车级 MOSFET 提供 -100V 至 650V 的击穿电压 V DS_Max。栅极源阈值电压 V GS(th) 为高电平(2.7 ~ 3.5V)或低电平(1.5 ~ 1.9V,-1.0 ~ -3.0V)。源极漏极导通电阻 R DS(ON) 低至 0.56mΩ(@ V GS = 10V)。FOM 低至 55。这些 MOSFET 通常组装在高效功率封装中,要么是小型表面贴装型,要么是传统通孔型。这些包括但不限于以下具有优异热特性的封装:PDFN3x3-8L、PDFN5x6-8L/-D、PowerJE®10x12(兼容TOLL)、PowerJE®7x8(兼容sTOLL)、TO-247-3/7L等。所有器件均按照AEC理事会和JEDEC定义的相关标准进行了长期可靠性和质量测试。
应用程序互联网应用程序的抽象技术开发正在从天文学上增长,增加了对运行和为大量连接的机器和物体供电的较小,更快和较低功率解决方案的需求。LS1012A是当今市场上最小的64位处理器,具有新颖的211 LGA软件包,可创建机械稳健且效率高的空间组件。但是,为了满足各种物联网应用需求,需要出色的董事会级别可靠性。这项研究通过执行单室热机械循环,单调弯曲测试和JEDEC Drop测试来评估211 LGA的板级别可靠性。本研究的目的是完全优化211 LGA的董事会级别性能,而不会大大更改包装设计。应用了两次重大的董事会级别更改,以实现大量董事会级别的性能,超过了所有预计的应用程序用途。关键词板级别的可靠性,焊料联合可靠性,土地网格阵列,热机械循环,物联网
1. DDR5 架构包括效率改进,即使在相同的理论速度 3200MT/s 下,由于 DDR5 技术具有高总线效率,系统带宽也比 DDR4 多 36%。结合每个模块的较低电压,此设计可提供卓越(更好)的性能。2. 在内存密集型工作负载下,由于突发长度增加一倍,存储体和存储体组增加一倍,并且速度明显高于 DDR4,DDR5 可提供 1.87 倍的带宽。它不仅在测试期间,而且在实际条件下,都支持以更高的通道效率扩展内存性能,即使在更高的速度下也是如此,这由为微电子行业制定开放标准的独立标准化机构 JEDEC 确定。3. 计算机必须具有支持 DDR5 的 CPU 和主板。Crucial DDR5 台式机内存与 DDR4 主板不兼容。 4. DDR5 的发布速度为 4800MT/s,可与极限性能 DDR4 内存速度相媲美,比标准 DDR4 的最大速度 3200MT/s 快 1.5 倍(50%)。DDR5 的发布速度为 4800MT/s,可提供标准 DDR4 的最大速度 3200MT/s 的 1.87 倍带宽。5. DDR5 的发布数据速率为 4800MT/s,传输的数据量比标准 DDR4 的最大数据速率 3200MT/s 多 1.5 倍(50%)。6. 发布时的密度和计划中的密度由 JEDEC 针对 DDR5 一代内存的使用寿命进行定义。7. DDR5 模块 (DIMM) 通过电源管理集成电路 (PMIC) 在模块上引入电压调节,从而实现更好的电源调节并减少主板上 DRAM 电源输送网络 (PDN) 管理的范围,从而提高效率。 8. Crucial DDR5 台式机内存是非 ECC 内存。ECC 适用于 RDIMM、LRDIMM、ECC UDIMM 和 ECC SODIMM,它是一种需要模块级额外 DRAM 的功能,以便服务器和工作站等平台可以纠正单个模块 (DIMM) 上的错误。但是,片上 ECC (ODECC) 是 DDR5 组件规范的一项功能,不应与模块级 ECC 功能混淆。Crucial DDR5 台式机内存采用包含 ODECC 的 DDR5 组件构建,但这些模块不包含系统级 ECC 所需的额外组件。9. 有限终身保修在除德国和法国以外的所有地区有效,在这两个国家,保修有效期为自购买之日起十年。
•热链接粘合剂。特别建议使用良好的热量耗散的热管理应用。•在不使用溶剂的情况下,获得了这种独特的两个组件系统的出色处理特性和室温下的长锅寿命。•易于使用。它可以打印,机器分配,盖章或手工。•模具粘合剂设计为在300°C范围内使用,以抵抗TC电线键合操作。符合JEDEC III级和II级包装标准。•对亚铁和非有产金属,铅框架模具桨,玻璃,陶瓷,科瓦尔和PCB的粘附良好。•可以非常迅速地治愈;用于进行快速维修的优质材料;可以在线半导体模切键合固化。•NASA已批准用于太空飞行计划; http://outgassing.nasa.gov/典型属性:(仅用作为指南,不用作为规范。不能保证以下数据。不同的批次,条件和应用产生不同的结果;治愈状况:150°C/1小时; *表示批次接受测试)
抽象跌落冲击可靠性测试是在电路板上进行的,该电路板与包括SAC305(SN3.0AG0.5CU)在内的几种不同的无铅焊料合金组装。AG含量的焊料组成范围从0%到3.0%按重量。还包括具有各种二级合金元件的合金。所有滴测试板都组装在一起,以使焊料糊状成分与BGA焊球合金的焊料组成相匹配,以生产已知成分的均匀焊接接头。使用替代测试板设计(不是JEDEC标准)进行此下降测试评估。测试板包含一个位于中央的Cabga 256包装(17x17毫米车身,1毫米螺距)。板设计的板设计了焊接定义的垫子,以最大程度地降低层压材料中垫板的碎屑破坏模式的发生。使用BGA或LGA互连将测试套件焊接到下降板上,以探索焊接量的效果。下降冲击事件的特征是在滴度表上进行加速监测,并在安装的测试板上的应变计测量值。
• 文件加载、编辑和保存 • 数据格式:Intel Hex、Motorola S-Record、Hex Auto-Recognition TekHex、Extended TekHex、ASCII、Raw Binary、Octal、MOSTech、Altera POF、Altera JAM 等。• 广泛的缓冲区编辑 • 受密码保护的缓冲区选项 • 完整校验和和 CRC 校验 • 读取设备、设备校验和、验证数据、验证签名、空白校验、位测试、设备擦除、过度编程 • 设备序列化、边缘验证、自动编程预测试等的编程选项。• Windows 中的免提模式编程,DOS 中的单击按键操作,用于连续编程,减少操作员错误的可能性 • 编程成功计数器 • 完全安全和加密阵列支持 • JEDEC 保险丝图编辑 • 编辑和应用最多 40 针 DIP/44 针 PLCC 的测试向量 • 在向引脚施加电压之前检查设备在插座中的位置 • 项目选项允许存储完整的设备配置,最大限度地减少将来的设置次 • 批处理软件允许为 DOS 下的定制软件界面编写用户宏。• Windows 中的在线帮助
摘要 — Ga 2 O 3 的低热导率可以说是 Ga 2 O 3 功率和射频器件最严重的问题。尽管进行了许多模拟研究,但是还没有关于大面积封装 Ga 2 O 3 器件热阻的实验报告。这项工作通过展示 15-A 双面封装 Ga 2 O 3 肖特基势垒二极管 (SBD) 并测量其在底部和结侧冷却配置下的结到外壳热阻 (R θ JC) 来填补这一空白。R θ JC 特性基于瞬态双界面法,即 JEDEC 51-14 标准。结冷和底部冷却的 Ga 2 O 3 SBD 的 R θ JC 分别为 0.5 K/W 和 1.43 K/W,前者的 R θ JC 低于同等额定值的商用 SiC SBD。这种低 R θ JC 归因于直接从肖特基结而不是通过 Ga 2 O 3 芯片进行散热。R θ JC 低于商用 SiC 器件,证明了 Ga 2 O 3 器件在高功率应用中的可行性,并表明了适当封装对其热管理的重要性。索引术语 — 超宽带隙、氧化镓、封装、肖特基势垒二极管、热阻。
法国里昂 摘要 碳化硅功率 MOSFET 在许多研究中用于提高电力电子转换器的效率或性能。然而,栅极氧化物技术弱点是碳化硅 MOSFET 晶体管的主要可靠性问题。阈值电压漂移是解决工业电源应用可靠性的关键现象。更好地理解栅极阈值电压漂移中隐含的现象非常重要。在此背景下,本文提出了一种基于 JEDEC 标准的静态老化测试,并研究和讨论了由此产生的栅极氧化物应力。进行了补充测试,包括动态可靠性和栅极氧化物特性,例如电荷泵技术。获得的结果用于为当前有关 SiC MOSFET 稳健性的讨论增添见解。此外,还详细介绍了测试台和测量协议。 * 通讯作者 quentin.molin@supergrid-institute.com 电话:+33 6 68 30 16 52 1. 简介 由于 SiC 具有比硅更优越的电气性能,因此它是一种很有前途的高压高温器件材料。然而,仍有许多可靠性问题有待解决,例如氧化物退化 [1]、阈值电压不稳定性 [2]、[3] 和短路行为 [4]、[5] 和 [6]。其中一些关键点对于开发用于工业应用的可靠功率器件至关重要 [7]。
本文介绍了在标准 JEDEC 跌落可靠性测试板上对边缘粘合的 0.5 毫米间距无铅芯片级封装 (CSP) 进行的跌落测试可靠性结果。测试板在几个冲击脉冲下接受跌落测试,包括峰值加速度为 900 Gs,脉冲持续时间为 0.7 毫秒,峰值加速度为 1500 Gs,脉冲持续时间为 0.5 毫秒,峰值加速度为 2900 Gs,脉冲持续时间为 0.3 毫秒。使用高速动态电阻测量系统监测焊点的故障。本研究中使用的两种边缘粘合材料是 UV 固化丙烯酸和热固化环氧材料。对具有边缘粘合材料的 CSP 和没有边缘粘合的 CSP 进行了测试。报告了每块测试板上 15 个元件位置的跌落至故障次数统计。测试结果表明,边缘粘合的 CSP 跌落测试性能比无边缘粘合的 CSP 好五到八倍。使用染料渗透和扫描电子显微镜 (SEM) 方法进行故障分析。观察到的最常见故障模式是焊盘翘起导致线路断裂。使用染料渗透法和光学显微镜对焊料裂纹和焊盘翘起故障位置进行表征。
UAD Flat No-Leads(QFN)半导体软件包代表了最稳定的芯片载体类型之一,预计随着原始设备制造商(OEMS)努力将更多的信号处理放入较小的空间中,它们可以继续生长。由于它们的低调,凝结的外形,高I/O和高热量耗散,因此它们是芯片组合固结,微型化和具有高功率密度的芯片的流行选择,尤其是对于汽车和RF市场。与任何软件包一样,可靠性至关重要,并且由于其广泛接受,OEM,集成设备制造商(IDM)以及外包组装和测试供应商(OSAT)的需求继续提高QFN的可靠性。处理铜铅框架表面,增强霉菌复合粘附并减少芯片包装中的分层的化学过程,可提高QFN的可靠性。这些化学过程会导致铜表面的微型粗糙,同时沉积热稳健的膜,从而增强了环氧封装剂与铅框架表面之间的化学键。通常,这种类型的过程可以可靠地提供JEDEC MSL-1性能。虽然这种化学预处理过程在分层方面提供了改进的性能,但它可以为铅框架打包器带来其他挑战。增加表面粗糙度放大了模具的趋势附着在流血(环氧树脂流出或EBO)上,从而导致充满银色的粘合剂,以分离和负面影响包装质量和可靠性。此外,在铅框架表面出血的任何环氧树脂都可以干扰其他下游过程,例如下键或霉菌化合物粘附。