摘要大气压力等离子体射流(APPJS)用于治疗表面(无机,有机和液体)的最佳用途取决于能够控制等离子体生成的反应物种流向表面的流动。典型的APPJ是一种稀有的气体混合物(RGM),该混合物(RGM)流过施加电压的管,产生RGM等离子体羽流,可延伸到环境空气中。由于电离波(IW)需要较高的电场才能传播到空气中,因此RGM等离子体羽流由周围的空气罩引导。将环境空气与RGM等离子体羽流的混合确定活性氧和氮种(RONS)的产生。AppJ通常是垂直于被处理的表面的定向。然而,由于AppJ传播性能的变化和所得的气体动力学,APPJ相对于表面的角度可能是控制反应性物种到表面的一种方法。在本文中,我们讨论了针对两个点的计算和实验研究的结果 - 具有或不具有指导气体罩的Appj中的IWS作为AppJ相对于表面的APPJ角度的函数;并使用该角度控制薄水层的血浆激活。我们发现,从等离子体管中传播到同一气体环境中的APPJ缺乏裹尸布引导的喷气机的任何方向性特性,并且随着等离子管的角度的变化,很大程度上遵循电场线。引导的Appjs随着角度的变化而同轴繁殖,并垂直向表面垂直转动,仅在表面上方只有几毫米。APPJ的角度产生不同的气体动态分布,从而可以对转移到薄水层的RON的含量进行一定程度的控制。
4 国防部已与行业总承包商 BAE Systems plc 和 Rolls- Royce plc 建立了新的合作伙伴关系,符合国防工业战略 3 ,这些合作伙伴关系在每个深度枢纽都使用行业管理的承包商和军事人员联合团队。这些混合团队在脉冲线路和支持维修车间进行维修和维护活动(图 3)。这些安排涉及转向可用性合同,而不是传统的备件和维修合同。可用性合同在交易期间以商定的能力水平交付商定数量的飞机或发动机。虽然 Tornado 和 Harrier 飞机的维护流程和实际交付存在差异,但合同方法大致相似。
近年来,在不同时期引入了变化。支持成本已大幅下降;转型产生了积极成果,即减少了综合项目团队的年度飞机支持预算。在 2001-02 年至 2006-07 年期间,该部门在 Tornado 和 Harrier 飞机的支持上分别实现了 13 亿英镑和 1.09 亿英镑的累计节省。该部门已将参与深度维修的服务人员数量减少了约 360 人。计划进一步减少两个飞机机队的成本和人力。变革的主要成本与 St Athan 4 的超级机库以及随后关闭国防航空修理局的快速喷气机业务有关。据估计,这大约是 1.4 亿英镑,与实现的节省相比,这远远超过了成本。
低空急流是低空大气中的风能最大值。由于它们对风力发电场的发电量有重大影响,因此了解低空急流与风力发电场之间的相互作用至关重要,我们使用大涡模拟对此进行了研究。我们发现,当急流位于风力发电场上方时,风力发电场后部的发电量相对较高。当低空急流位于涡轮机轮毂高度时,后部涡轮机的发电量受到限制。但是,当急流在风力涡轮机下方流动时,后部涡轮机的发电量高于预期。原因是急流的负剪切产生了显著的向上夹带通量,这有助于下游涡轮机从急流中提取能量。虽然从发电的角度来看,低空急流是有益的,但我们的模拟还表明,它们的存在会导致气动载荷的显著周期性变化。这意味着低空急流会增加涡轮机所经受的疲劳载荷,这可能会对涡轮机的寿命产生负面影响。总的来说,我们的工作强调了基础流体动力学研究对于了解风电场流动动力学的重要性。
飞机结构设计是一个复杂的工业过程,需要对空气动力学、结构、材料和系统等不同领域进行多学科分析和考虑,并在这些不同领域施加的约束之间进行适当的折衷,以满足飞机所需的整体性能。在公务机和军用飞机领域,鉴于对更高效的空气动力学公式的研究、对“尽可能轻”设计的不断渴望以及机身尺寸的增加,飞机的灵活性在过去几十年中大大提高。这就需要考虑从飞机开发的最初阶段开始就存在于飞行包线中的越来越复杂的气动弹性耦合现象。挑战远远超出了航空结构性能领域,因为气动弹性也会对相关领域产生重大影响,例如飞机性能、操纵品质或系统设计。这仅仅强调了气动弹性对新飞机项目的风险、成本和期限的潜在重大影响:气动弹性现在被视为设计的主要学科之一,也是飞机开发逻辑中的“关键”过程之一。这种极具挑战性的背景是自 20 世纪 90 年代以来达索航空在气动弹性领域不断进行重大修改的源头。今天,这种趋势仍在继续,气动弹性将不得不应对一系列全新的挑战和需求,并继续以同样的速度自我改造,以避免阻碍创新和未来的技术突破。从这个角度来看,本文概述了达索航空在军用飞机和公务机领域在气动弹性方面当前的最佳工业实践。涵盖了这个充满挑战和令人兴奋的领域的主要方面:数值方法和工具、实验验证过程、飞机计划期望以及与人类组织相关的方面。它讨论了原则和指导方针,而不是有关基本方程和方法的细节。最后一部分介绍了达索航空在气动弹性领域未来的工业挑战。
卡塔尔航空公司 (QA) 在创纪录的财年之后重返范堡罗国际航展,并将其全球网络扩展到 150 多个目的地。在为期五天的展会期间,卡塔尔航空公司展示了其最先进的波音 787-9 梦想飞机,此前从未在航展上展出过。这架客机于 2021 年投入使用,配备了全新的 Adient Ascent 商务舱套房,配有滑动隐私门、无线移动设备充电和 79 英寸平躺床。一架波音 777-300ER 飞机也将出现在范堡罗航展上,该飞机采用特殊的 2022 年 FIFA 世界杯涂装,以迎接今年晚些时候在多哈举办的比赛。这架飞机配备了业界领先的 Qsuite 商务舱座椅,被 Skytrax 评为 2021 年全球最佳商务舱座椅。卡塔尔航空集团的私人飞机包机部门卡塔尔商务航空正在展示其豪华的湾流 G650ER;由于其卓越的航程能力、业界领先的客舱技术、燃油效率和无与伦比的乘客舒适度,它是全球旅行精英中最令人垂涎的喷气式飞机之一。这架优雅的飞机可以以更快的速度飞行更长的距离,其令人难以置信的 7,500 海里的航程,并以其精致的客舱内饰和时尚的装饰而闻名。(TNN) 第 3 页
传感器和通信技术的进步使航空飞行更加容易和安全,但代价是飞机会产生大量信息。尽管大量信息用于地面离线处理或机载任务计算机自动处理,如控制自动驾驶系统,但飞行员需要手动感知和处理大量信息,以便为飞行和任务控制任务做出决策(Hierl、Neujahr 和 Sandl,2012 年)。军用快速喷气式飞机(用于空中优势或多用途任务的战斗机)的信息处理比客机更困难,因为飞行员除了主要飞行任务外还需要执行次要任务。次要任务控制任务可能包括侦察、保护或跟踪空中资产以及武器投送,所有这些都需要仔细感知和分析飞机外部的信息以及驾驶舱内显示的信息。在有限的驾驶舱空间内有效显示信息是一项具有挑战性的设计任务。现有军用飞机使用三种类型的视觉显示器:下视显示器 (HDD)、抬头显示器 (HUD) 和头戴式显示器 (HMD)。HDD 配置为将信息显示为多功能显示器 (MFD)。MFD 用于以可配置的方式显示从主要飞行数据到空中物体细节等信息。每个都是矩形的,由一组
目标。木星的大气的特征是带状喷气机,包括赤道超旋转射流,具有强烈的潮湿的影响活动,以及涡流,波浪和湍流所施加的扰动。即使在对木星的太空探索任务和木星的详细数值建模之后,关于带喷头的机制以及干燥和湿对流在维护这些喷气机中所起的作用仍然存在问题。方法。我们使用称为Jupiter-Dynamico的全球气候模型(GCM)报告了木星天气层的三维模拟,该模型将其在二十面体网格上与详细的辐射传输计算结合在二十面体网格上。我们添加了一个用于木星的热羽流模型,该模型通过干燥和潮湿的对流羽流,模仿热,动量和示踪剂的效果,这些羽流在GCM网状间距中未解决,并使用基于物理学的方法尚未解决。结果。我们的木星 - dynamico全球气候模拟表明,大规模的Jovian流,尤其是喷气结构,可能对对流层中的水丰度高度敏感,并且存在赤道超级旋转的丰度阈值。与我们的干燥(或弱潮湿)模拟相比,包括观察到的对流层水量的模拟在赤道处显示出明显的超级旋转向东,而十二个向东的中纬度喷气机则不会迁移极点。幅度与观测值一致。如闪电观测所表明的那样,通过我们的热羽模型模拟的对流活性比中部至高纬度地区弱。无论它们是干燥还是潮湿,我们的模拟都会在Zonosrothic Congime中观察到的从小(涡流)到大尺度(JET)的逆向能量级联反应。
背景。形成大质量恒星会发射磁源流出物,这实际上是寻找大质量恒星形成地点的标志。然而,直到最近几年,才有可能对这种磁驱动流出物的形成和传播进行理论和观察研究。目的。通过这项工作,我们旨在详细研究从大质量恒星形成早期阶段驱动高度准直流出的机制,以及这些过程如何受到形成大质量恒星的原生环境特性的影响。方法。我们进行了一系列 31 次模拟,旨在建立这些机制的统一理论图景,并确定不同环境的影响如何改变它们的形态和动量输出。磁流体动力学模拟还考虑了欧姆耗散作为非理想效应、自重力和尘埃和气体热吸收和发射的扩散辐射传输。我们从一个坍缩的云核开始,它被最初均匀的磁场穿过,并且正在缓慢旋转。我们在球坐标系中使用了二维轴对称网格。结果。在模拟中,我们可以清楚地区分快速的磁离心发射和准直喷流(速度 ≳ 100 km s − 1 )和由磁压驱动的更宽的磁塔流,后者会随时间而变宽。我们详细分析了流动的加速度,以及它在几百个天文单位的距离处被磁力重新准直。我们量化了磁制动对外流的影响,这会缩小系统后期演化的外流腔。我们发现,尽管自重力和介质热力学不可扩展,但我们的结果会随着云核的质量而变化,原则上可以用于这种质量的一系列值。我们观察到,对于大质量原恒星的诞生环境的各种假设,都存在相同的喷流驱动机制,但随着时间的推移,它们的形态和机械反馈会发生变化,从而达到更大的尺度。
JETS 承包商应准备上述羽流模型及其开发背景的文件。本文件旨在取代主要为航天飞机轨道器开发的当前羽流建模文件。JETS 承包商还应提供数据平行线松弛 (DPLR) 计算流体动力学 (CFD) 和斜接喷嘴羽流的 DAC DSMC 模拟最佳实践文件的更新。JETS 承包商应准备上述羽流冲击工程对加热速率环境和热响应的预测文件。此外,JETS 承包商将为直接模拟蒙特卡罗 (DSMC) 分析代码 (DAC) 提供开发和工程支持,这是 NASA 用于模拟稀薄气体动力学环境(包括羽流和羽流冲击)的主要软件。最后,JETS 承包商应负责 RPM3D 分析工具、空间站调制器 (SSM) 网格生成工具以及相关 ISS 几何模型的维护。