pn 结中的二极管效应在现代微电子学中起着重要作用。由于电子(n)和空穴(p)掺杂区之间的反演对称性破缺,电子传输是非互易的,即电流只能朝一个方向流动。这种非互易性质已广泛应用于晶体管、发光二极管、太阳能电池等电子设备中。最近,类似的二极管效应在超导系统中引起了极大的兴趣 [1-66]。与 pn 结中的二极管效应一样,超导二极管效应 (SDE),或者具体来说是约瑟夫森结 (JJ) 中的约瑟夫森二极管效应 (JDE),有望找到重要应用,如无源片上回转器和循环器 [66]。这类设备在量子计算应用中将特别有影响力。此外,SDE/JDE 可用作研究新型超导特性(如有限动量库珀对)的替代方法 [2, 10]。在典型的 JJ 或超导量子干涉装置(SQUID)中,IV 曲线在装置处于正常状态的高电流范围内呈线性,如图 1(d)所示。电压 V DC 在所谓的再捕获电流 I + r(对于电流向下扫描)处突然降至零,并在很大的电流范围内保持在零,直到达到开关电流 − I − c。本文中,我们将该开关电流视为 JJ 的临界电流(I c ),并在本文中始终使用临界电流这一术语。超过 − I − c 后,IV 曲线变为线性,装置再次进入正常状态。对于电流向上扫描曲线,可以观察到 IV 曲线的类似形状,并标记出相应的 − I − r 和 I + c 的位置。一般而言,只要存在时间反演对称性 (TRS) 或反演对称性,I + c = I − c 就与电流扫描方向无关。然而,当两种对称性都被破坏时,临界电流会根据电流扫描的方向显示不同的值,这种现象称为 JDE [ 1 , 2 ]。在非中心对称超导系统或非对称 SQUID 等器件结构中,反演对称性会被破坏