由于细菌和昆虫广泛分布于全球,因此细菌和昆虫之间的相互作用会对许多不同领域产生重大影响。由于昆虫是疾病传播的媒介,细菌与昆虫之间的相互作用可能会直接影响人类健康,而且它们之间的相互作用还可能产生经济后果。此外,细菌与昆虫之间的相互作用还与经济上重要的昆虫的高死亡率有关,从而造成巨大的经济损失。微小RNA(miRNA)是一种非编码RNA,参与转录后基因表达的调控。miRNA的长度为19至22个核苷酸。除了能够表现出动态表达模式外,miRNA还具有多种靶标。这使它们能够控制昆虫的各种生理活动,如先天免疫反应。越来越多的证据表明,miRNA通过影响免疫反应和其他抗性机制,在细菌感染中发挥着至关重要的生物学作用。本综述重点介绍了近年来的一些最新和令人兴奋的发现,包括细菌感染背景下 miRNA 表达失调与感染进展之间的相关性。此外,它还描述了它们如何通过靶向 Toll、IMD 和 JNK 信号通路对宿主的免疫反应产生深远影响。它还强调了 miRNA 在调节昆虫免疫反应中的生物学功能。最后,它还讨论了目前关于 miRNA 在昆虫免疫中的作用的知识空白,以及未来需要更多研究的领域。
在全球范围内,肺癌代表了与癌症相关死亡率的主要原因,其中85%的病例归因于非小细胞肺癌(NSCLC)。转移性进展仍然是治疗晚期肺癌的主要挑战,导致五年生存率为20-30%。透明质酸介导的运动受体(HMMR)已被确定为NSCLC中的一种新型癌基因。但是,其在NSCLC和转移中的确切作用和机制尚未完全理解。升高的mRNA和蛋白质水平。增加的HMMR表达与较差的预后相关,多元COX回归分析也将其确定为独立的预后因素。HMMR敲低抑制了肿瘤细胞迁移和侵袭,而其过表达增强了这些过程。从机械上讲,HMMR通过与有丝分裂原激活的蛋白激酶激酶激酶激酶4(MAP4K4)结合来促进肿瘤转移,从而激活P-JNK/P-C--C- JUN/MMP1信号级联。通过MAP4K4敲低或GNE-495处理,确认了HMMR过表达对转移势和JNK信号的影响。此外,发现胰岛素类似于生长因子2 mRNA结合蛋白2(IGF2BP2)与HMMR的N 6-甲基腺苷(M 6 A)位点结合,从而增加了mRNA稳定性和HMMR表达水平。在小鼠模型中,MAP4K4抑制剂GNE-495成功抑制了HMMR过表达引起的肺转移。这些结果为HMMR的生物学功能提供了宝贵的见解,同时提出了新型治疗方法的潜在途径。
持续的病理心肌肥大会导致心力衰竭(HF);一个重大的健康问题影响了全球大部分人口。在HF中,肽素II(UII)的循环水平有明显的升高,但目前尚不清楚这是否是肥大的结果,还是高水平的高水平有助于肥大的发展。这项研究的目的是研究UII及其受体UT在心脏肥大发展中的作用和所涉及的信号分子。室心肌细胞用200nm UII处理48小时,并通过长度/宽度(L/W)比的测量来定量肥大。UII导致L/W比的变化从4.53±0.10到3.99±0.06; (p <0.0001)48小时后。响应由UT-Antagonist SB657510(1μm)逆转。UT受体激活导致通过Western印迹测量的ERK1/2,P38和CAMKII信号传导途径的激活;这些参与肥大的诱导。JNK不参与。此外,ERK1/2,P38和CAMKII抑制剂完全阻断了UII诱导的肥大。肌质网(SR)Ca 2+渗出症在分离的心肌细胞中研究。SR Ca 2+渗出没有显着增加。我们的结果表明,MAPK和CAMKII信号通路的激活与对UII的肥厚反应有关。总的来说,我们的数据表明,增加的循环UII可能有助于左心室肥大的发展和对UII/UT受体系统的药物抑制作用,可能证明有益于减少心脏病中的不良重塑和减轻收缩功能障碍。
本文报告说,蛋白质M-SEC介导FMS聚集,并且缺乏这种相互作用促进了FMS的激活和信号传导。据报道,相互作用是由PIP2介导的。本文包含许多数字,在不同模型的CSF1R/TNFAIP2过表达/抑制/敲低的不同模型中表现出了许多相似的发现。评论和问题: - 请使用官方基因符号:CSF1R和TNFAIP2-引用的论文支持CSF1R单体形成大型聚集体的事实实际上并不支持这一事实。参考文献21推测可能是这种情况。参考文献23涉及核CSF1R。- 特定细胞隔室中的聚集体是否(例如Golgi),以前CSF1R已定位?- tnfaip也是当地的吗?https://www.scienceccedirect.com/science/article/pii/s0898656816301140-图1-显然没有表面CSF1R表达?- 细胞表面如何定义定量?是这些细胞CSF1饥饿 - 将受体带到表面。M-SEC抑制剂的特异性和敲低的效率是什么?- 图2 -CSF1依赖性iNOS是不寻常的,通常需要LPS/IFNG刺激 - 请评论。文本提到M-SEC敲低不会影响LPS刺激的INOS表达,但没有显示数据。应显示这一点,因为LPS强烈诱导M-SEC/TNFAIP2。- 图3 -P38和JNK不是CSF2下游的经典途径 - 请注释 - 图6-没有显示对照染色(即没有FMS表达式的293) - 图10-图10-该活细胞成像如何?M-SEC/FMS共表达细胞中发生了什么
蜜蜂是农作物和新鲜农产品生产中最重要的传粉昆虫。温度影响蜜蜂的存活,决定其发育质量,对养蜂生产意义重大。但对于发育阶段的低温应激如何导致蜜蜂死亡以及对后续发育产生什么亚致死影响知之甚少。早期蛹期是蛹期对低温最敏感的阶段。在本研究中,早期蛹虫分别暴露在20°C下12、16、24和48小时,然后在35°C下孵化直至羽化。我们发现48小时的低温持续时间导致70%的蜜蜂个体死亡。虽然12和16小时的死亡率似乎不是很高,但幸存个体的联想学习能力受到很大影响。蜜蜂脑切片显示低温处理可以导致蜜蜂大脑发育几乎停止。低温处理组(T24、T48)与对照组的基因表达谱显示,分别有1,267个和1,174个基因发生差异表达。差异表达基因功能富集分析表明,MAPK和过氧化物酶体信号通路上Map3k9、Dhrs4、Sod-2基因的差异表达对蜜蜂头部造成了氧化损伤;在FoxO信号通路上,InsR和FoxO基因上调,JNK、Akt、Bsk基因下调;在昆虫激素合成信号通路上,Phm和Spo基因下调。因此,我们推测低温应激影响激素调控。检测到与神经系统相关的通路有胆碱能突触、多巴胺能突触、GABA能突触、谷氨酸能突触、5-羟色胺能突触、神经营养素信号通路和突触小泡循环。这意味着蜜蜂的突触发育很可能受到低温应激的重大影响。了解低温应激如何影响蜜蜂大脑发育的生理及其如何影响蜜蜂行为,为更深入地理解社会性昆虫“恒温”发育的温度适应机制提供了理论基础,并有助于改进蜜蜂管理策略以确保蜂群的健康。
摘要 背景 癌症患者的骨骼发病率对生活质量有重大影响,在改善结果的同时保持骨骼健康是现代抗肿瘤治疗策略的重要目标。尽管免疫检查点抑制剂 (ICI) 在疾病早期阶段被广泛使用,但其对骨骼的影响仍不甚明了。在此,我们通过纵向评估癌症患者的骨转换标志物并在新型生物工程 3D 骨重建模型中进行验证,全面研究了 ICI 对骨骼健康的影响。方法进行了一项探索性纵向研究,在晚期癌症患者中,每次应用 ICI(程序性细胞死亡 1 (PD1) 抑制剂或程序性死亡配体 1 (PD-L1) 抑制剂)前 6 个月或直到病情进展之前,评估骨吸收(C 端肽,CTX)和骨形成(I 型原胶原 N 端前肽,PINP 和骨钙素,OCN)的血清标志物。为了验证体内结果,我们评估了 ICI 治疗后破骨细胞 (OC) 和成骨细胞 (OB) 的分化。此外,通过免疫组织化学、共聚焦显微镜和动态 3D 骨模型中的蛋白质组学分析评估它们对骨重建的影响。结果在治疗的第一个月,CTX 水平急剧下降但时间短暂。相反,我们观察到 4 个月治疗后血清 PINP 和 OCN 水平延迟增加。在体外,ICI 通过抑制 STAT3/NFATc1 信号传导(但不抑制 JNK、ERK 和 AKT)来损害破骨细胞前体的成熟,同时对成骨没有任何直接影响。然而,使用我们的生物工程 3D 骨模型,该模型能够同时分化 OB 和 OC 前体细胞,我们证实了暴露于 ICI 时 OC/OB 活性的解偶联,这是通过展示 OC 成熟受损以及 OB 分化增加来实现的。结论我们的研究表明,抑制 PD1/PD-L1 信号轴会干扰骨转换,并可能通过间接促进成骨对骨骼发挥保护作用。
响应多种细胞信号,丝裂原活化蛋白激酶 MAP3K1 参与各种癌症信号网络,包括 NF κ B、JNK、ERK 和 p38 通路。MAP3K1 作为这些致癌通路中的信号激酶,促进肿瘤生长和转移。此外,胰腺癌患者中较高的 MAP3K1 转录水平与较差的 5 年生存率(50% vs. 15%)相关,这表明 MAP3K1 是癌症的一个有吸引力的治疗靶点。我们最近报道了一种喹喔啉类似物作为选择性 MAP3K1 抑制剂的发现(2022,PNAS)。使用 MAP3K1 AlphaFold 和 Schrödinger GLIDE 进行结构引导设计,得到 51-106,预计通过形成正交多极相互作用,它对 MAP3K1 的亲和力会提高。使用 KiNativ TM 平台在细胞基质中分析 51-106 表明 51-106 确实是一种具有改进效力的选择性 ATP 竞争性 MAP3K1 抑制剂。后续研究表明 51-106 阻断了 TNF α 诱导的 MAP3K1-IKK β 介导的 NF κ B 活性。51-106 抑制 MAP3K1 后进行的磷酸化蛋白质组学分析显示 NPM1 T199 磷酸化呈剂量依赖性下降,表明 NPM1 是 MAP3K1 的新底物。NPM1 在 DNA 损伤修复中起着关键作用;我们持续观察到 51-106 抑制 MAP3K1 后剂量依赖性的 S 期停滞,表明 DNA 损伤反应功能失调。用 MAP3K1 抑制剂 51-106 治疗胰腺癌细胞系可抑制细胞生长和迁移。在联合研究中,51-106 与吉西他滨在体外 LSL- KrasG12D/+、LSL-Trp53R172H/+、Pdx1-Cre (KPC) 细胞系和体内 KPC 同源原位移植小鼠胰腺癌模型中协同抑制生长。总之,我们使用结构引导设计开发了改进的 MAP3K1 抑制剂。我们的研究首次将 NPM1 确定为 MAP3K1 信号传导的成员,这些结果值得研究 MAP3K1 抑制作为癌症治疗选择。
背景:糖尿病性视网膜病(DR)是威胁性糖尿病的微血管并发症。慢性炎症和内皮功能障碍是疾病发病机理中的关键因素。因此,为减少视网膜炎症而开发的干预措施预计将对DR的预防和治疗有益。在本研究中,我们开发了一类具有有效抗炎活性的无药肽的纳米杂化剂,并研究了其在氧气诱导的视网膜病变(OIR)小鼠模型和链蛋白酶(STZ)诱导的糖尿病小鼠模型中治疗DR的治疗功效。方法:六肽被用于修饰金纳米颗粒以形成基于药物的基于药物的纳米杂交(P12)。然后,我们检查了p12在HUVEC和BV2细胞中的理化特性和抗炎活性,并确定了这种新型生物活性的关键氨基酸。应用玻璃体内和恢复轨道注射以确定P12的最佳视网膜输送途径。使用OIR模型和STZ诱导的糖尿病模型研究了p12治疗DR的治疗功效。通过免疫组织化学和流式细胞仪分析,我们确定了在视网膜中内化p12的主要细胞。 此外,还使用体外实验来探索p12抗炎活性的基本分子机制。 结果:我们发现P12在HUVEC和BV2细胞中均表现出有效的抗炎作用。 此外,可以通过玻璃体内注射有效地将p12有效地输送到视网膜。通过免疫组织化学和流式细胞仪分析,我们确定了在视网膜中内化p12的主要细胞。此外,还使用体外实验来探索p12抗炎活性的基本分子机制。结果:我们发现P12在HUVEC和BV2细胞中均表现出有效的抗炎作用。此外,可以通过玻璃体内注射有效地将p12有效地输送到视网膜。玻璃体内注射的p12显着改善了早期DR症状,包括STZ诱导的糖尿病小鼠的血管泄漏和周细胞损失。它还抑制了OIR小鼠的病理新生血管形成和视网膜出血。重要的是,我们发现玻璃体内注射的p12主要由小胶质细胞和内皮细胞吸收,从而导致视网膜内皮炎症和DR动物模型中的小胶质细胞激活减少。机理研究表明,p12在内皮细胞和小胶质细胞中都有效抑制了几种TLR4下游信号通路,例如NF-κB,JNK和P38 MAPK。这种效应是由于p12在阻止内体TLR信号转导的内体酸化过程中的能力。结论:我们的发现表明,局部注射经过适当设计的,无药,基于肽的纳米杂交可以作为治疗DR的安全有效的抗炎纳米医学。
áreatemática:生物ociacias yBiotecnologíaNombre:Almoudo Castillo,Maria Coreceencia:RYC2021-031051-I Correoelectrónico:malmcas@upo.es@upo.estítulo:título:título:细胞身份识别机制和分配机制和分配的机制,或分配的机制,既定力备忘录:毕业后,我决定在巴塞罗那大学(UB)学习一位发育生物学硕士学位,并发现了有关Planarian再生的信息。这些蠕虫能够在切成碎片后的几天内再生整个比例的动物。因此,了解这些组织如何识别它们所缺少的内容并将其再生它,对我来说是学习控制图案,大小和相称性的机制的理想模型。在我的博士学位研究期间,我描述了非典型的Wnt信号对于定位再生器官的定位至关重要,而JNK如何充当控制plan骨体再生启动和重新缩放的信号枢纽。由于模型的主要技术局限性,我总是错过更精确地量化这些形态发生机制的可能性。这就是为什么我决定搬到图宾根(德国)的马克斯·普朗克研究所(Max Planck Institute)进行我的术后,旨在获取进行定量形态发生的知识和所需的工具,并通过使用最合适的研究模型来学习成像,生物物理学和计算机建模,从而获得更跨学科的背景。在那里,与我的计算机科学家同事一起,我们描述了一种新颖且非常优雅的缩放机制,胚胎可以感觉到它们的大小并按比例调整不同组织的量。这项工作向我展示了生物学与建模之间的对话,以解释复杂的生物学过程,并使我了解了跨学科项目所需的编程基础的理解。为了确定我独立研究的基础,我决定获取有关组织的物理力和机械特性的知识。最终使用我在信号身份和缩放方面的专业知识来了解如何将这些不同信息来源互连以生成一个完美形成,图案的器官,并且与最终大小相称地缩放。考虑到这一点,我搬到了Centro Andaluz deBiologíadel Desarrollo(CABD),这为我提供了一个出色的基础设施,以进行我设想的创新和多学科项目。在这个项目中,2019年,我获得了玛丽·斯库洛多夫斯卡(Marie Sklodowska-Curie)博士后奖学金,这使我能够开发自己的独立研究线,并从Fundación社会La Caixa获得了初级领导者赠款,我开始领导自己的研究团队。在2021年,我从西班牙的部长获得了我的第一个Proyecto I+D+I,以巩固我的独立研究小组。与我的新团队一起,我旨在描述Wnt身份规范和YAP机械调节之间通信的分子和转录基础,以产生比例且形状完美的眼睛。以后分析这些机械信号的相互作用和缩放能力是否保持在通过ESC产生的体外眼器官中。i最终旨在为下一代再生疗法建立生物学基础,因为力学,身份规范和器官大小之间的协调对于器官可塑性和整合至关重要,这对于器官再生及其后来的移植是必需的。
气道重塑是急性和慢性肺部疾病(如急性病毒感染,包括 SARS-CoV-2 和肺气肿)最明显的后果,它是呼吸系统结构成分中促炎性细胞内和细胞外事件的后遗症 [1,2]。这些气道疾病导致上皮细胞凋亡和炎性细胞浸润。所有这些病理事件均导致或由肺泡弹性蛋白损伤所致,而肺泡弹性蛋白是呼吸力学的重要组成部分,负责肺弹性回缩。促炎性细胞因子 IL-6、IL-1 β、TNF- α、IL-23 和蛋白酶 MMPs 2、9 和 12 是肺部炎症相关变化的常见调控因子 [3]。它们已被证实可以降低弹性蛋白 mRNA 表达或直接降解肺中的弹性蛋白。这些细胞因子目前不仅是 COPD 药物研发的主要靶点,也是肺部病毒感染引起急性肺损伤的主要靶点。FDA 已批准两类 IL-6 抑制剂用于治疗 COVID 19,即 a) 抗 IL-6 受体单克隆抗体 (mAb)(例如 sarilumab、tocilizumab)和 b) 抗 IL-6 mAb(即 siltuximab)。FDA 最近于 2022 年 12 月 21 日批准托珠单抗与地塞米松一起用于 COVID 19 患者作为辅助疗法,而 Sarilumab 尚未被批准用于细胞因子风暴管理 [4]。然而,这些药物有严重的副作用,包括中性粒细胞减少症、低纤维蛋白原血症和增加继发感染的风险,如结核病、细菌和真菌感染以及碗穿孔,限制了它们在一般健康人群中的使用 [5]。强力霉素 (Doxy) 已被发现在许多情况下是一种有用的药物。最近的一份报告显示,用 Doxy 治疗 Vero E6 细胞前后均能以剂量依赖性方式有效抑制 SARS-CoV-2 毒株 (IHUMI-3) [6]。Doxy 的抗炎潜力被用于治疗慢性疾病,包括布鲁氏菌病性脊柱炎、创伤性脑损伤、腹主动脉瘤,其中它已被证明可以降低全身炎症标志物 IL-6 的水平,并抑制 MCP-1 和 MMP 等趋化因子 [7-10]。相反,Butler 等人最近的一项研究表明,用强力霉素(口服)治疗并不能减少 COVID-19 相关的康复时间以及死亡人数 [11]。然而,这是系统性地给予一种首过代谢损失很大的药物,因此可能无法在局部肺组织中达到高浓度。此前,我们已经证明单次静脉注射注射弹性蛋白抗体偶联的载有强力霉素的牛血清白蛋白纳米颗粒 (Doxy NP) 可有效靶向肺气肿,并导致强力霉素在四周内局部持续释放到肺部,与强力霉素 IV 相比,导致基质金属蛋白酶 (MMP) 活性降低 [ 12 ]。我们的方法是当纳米颗粒进入肺部弹性蛋白损伤部位时将强力霉素输送到肺部,因此,少量药物比全身剂量更有效。我们并不是说这种疗法可以恢复 COVID 患者的肺部,而是强调靶向给药比全身给药更好。 Doxy 的作用部分在于抑制蛋白激酶 B (AKT) 信号通路和丝裂原活化蛋白激酶 (MAPKs) 信号蛋白,包括体外 VSMC 中的细胞外信号调节激酶 (ERK)、c-Jun 氨基末端激酶 (JNK) [ 5 ]。其炎症小体抑制能力被发现有利于改变前列腺癌 (PC3) 和肺癌细胞系 (A549) 中的肿瘤微环境 [ 13 ]。然而,目前尚不清楚 Doxy 如何抑制炎症反应,特别是在肺部。我们想测试 Flexibzumab 偶联的载有强力霉素的牛血清白蛋白纳米颗粒的静脉输送是否