写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 分析序列和级数的性质。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 UNIT-I:矩阵 矩阵:矩阵的类型,对称;Hermitian;斜对称;斜 Hermitian;正交矩阵;酉矩阵;通过梯形和标准形式对矩阵进行秩计算,通过高斯-乔丹方法求非奇异矩阵的逆;线性方程组;求解齐次和非齐次方程组。高斯消元法;高斯赛德尔迭代法。第二单元:特征值和特征向量线性变换和正交变换:特征值和特征向量及其性质:矩阵的对角化;凯莱-哈密尔顿定理(无证明);用凯莱-哈密尔顿定理求矩阵的逆和幂;二次型和二次型的性质;用正交变换将二次型简化为标准形式第三单元:数列与级数序列:数列的定义,极限;收敛、发散和振荡数列。级数:收敛、发散和振荡级数;正项级数;比较检验、p 检验、D-Alembert 比率检验;Raabe 检验;柯西积分检验;柯西根检验;对数检验。交错级数:莱布尼茨检验;交替收敛级数:绝对收敛和条件收敛。 UNIT-IV:微积分中值定理:罗尔定理、拉格朗日中值定理及其几何解释和应用、柯西中值定理。泰勒级数。定积分在计算曲线旋转表面面积和体积中的应用(仅限于笛卡尔坐标系)、反常积分的定义:Beta 函数和 Gamma 函数及其应用。 UNIT-V:多元微积分(偏微分和应用)极限和连续性的定义。偏微分;欧拉定理;全导数;雅可比矩阵;函数依赖性和独立性,使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
编写一组线性方程的矩阵表示,并分析方程系统的解决方案查找特征值和本征媒介使用正交转换将二次形式减少到规范形式。分析序列和序列的性质。在平均值定理上求解应用程序。使用beta和伽马函数评估不正确的积分找到两个具有/没有约束的变量的功能的极端值。单元I:矩阵矩阵:矩阵的类型,对称;隐士偏度对称;偏斜;正交矩阵;单一矩阵;按梯形形式和正常形式的矩阵等级,高斯 - 约旦方法的非单个矩阵倒数;线性方程系统;解决同质和非均匀方程的求解系统。高斯消除方法;高斯Seidel迭代方法。单元-II:特征值和本征载体线性变换和正交转换:特征值和特征向量及其特性:矩阵的对角线化; Cayley-Hamilton定理(没有证据);查找矩阵的逆向和力量由Cayley-Hamilton定理进行;二次形式的二次形式和性质;通过正交转换单位-III将二次形式的形式降低至规范形式:序列与串联序列:序列的定义,极限;收敛,发散和振荡序列。系列:收敛,发散和振荡系列;一系列积极术语;比较测试,p检验,D-Alembert的比率测试; Raabe的测试;库奇的整体测试;库奇的根测试;对数测试。泰勒的系列。交替系列:Leibnitz测试;交替收敛序列:绝对和有条件收敛。单元-IV:微积分平均值定理:Rolle的定理,Lagrange的平均值定理,其几何解释和应用,Cauchy的平均值定理。
占用和运动探测器:超声波、微波运动、电容式占用、可见光和近红外光、远红外运动、PIR 运动、位置、位移和水平传感器:电位式、重力式、电容式、电感和磁式、光学、超声波、雷达位置、位移和水平传感器:电位式、重力式、电容式、电感和磁式、光学、超声波、雷达。速度和加速度传感器:电容式加速度计、压阻式加速度计、压电式加速度计、热加速度计、加热板加速度计、加热气体加速度计、陀螺仪、压电电缆 气体传感器:二氧化碳、一氧化碳、NOX、SOX、PM2.5、PM10、挥发性有机化合物 应用:制造业、机器人领域的案例研究