德克萨斯州 4-H 4-H 全区 STEM 研究项目名称:风力涡轮机年级:5 年级和 6 年级 TEKS:科学 5.1(A)、5.2 (A)(B)(C)(D)(F)(G)、(5.3 A)、(5.4 A)、(5.7 C) (6.7 A) 数学 (5.1 A, D)、(5.3 A, G, K)、(5.9 A, C)。课程名称:风力涡轮机 目标(2 到 4): 学习科学方法 步骤 了解可再生能源 练习 15 项 SET 能力(构建、分类、协作、演示、描述、对比、解决、设计、评估、假设、发明、推断、解释、测量和学习图形表示的基础知识) 用品:一个 Pico 涡轮机、风扇、码尺或卷尺 一个电压表,时间分配:60 分钟(建议至少进行 5 次试验,每次 10 分钟)探索内容:涡轮机以不同的距离暴露在风扇产生的风中,叶片角度也会发生变化。 词汇: 可再生能源:从人类时间尺度上自然补充的资源中收集的能量,例如阳光、风、雨、潮汐、波浪和地热。 风力涡轮机:通过因形状而产生升力来工作。 叶片:形状旨在以最小的成本从风中产生最大的功率。角度:风力涡轮机产生的电力将根据叶片的放置角度而变化,产生最大功率输出的角度为 45 度。伏特:电压或电位差的电气单位(符号:V)。一伏特定义为每库仑电荷消耗一焦耳的能量。
在过去的十年中,拉曼光谱已被证明是一种强大的光谱方法,有助于了解纳米级复杂而迷人的能量传输世界。人们开发了各种基于拉曼的方法来测量二维材料和其他纳米级结构的热性能。光热拉曼法常用于确定原子级薄材料(如石墨烯和过渡金属二硫属化合物 (TMD))的界面热阻 (R ″ tc ) 和热导率 (k)。[1–4] 该技术同时使用激光加热样品和拉曼信号表征。温度相关的拉曼信号和 3D 热传导模型用于提取热性能测量值。通过焦耳加热的拉曼测温法同样可以探测界面能量传输和热导率;通过用激光加热代替电流加热源,可以使用物理建模和温度相关的拉曼信号来确定 R ″ tc 。 [5,6] 最近,人们设计了另一种综合光热拉曼方法,使用连续波和脉冲激光来测量二维材料的热性能。[7] 该方法通过比较一系列激光光斑尺寸和脉冲持续时间的不同拉曼温度响应来测量单层和多层石墨烯的 k。此外,双激光拉曼测温法和双波长闪光拉曼映射法分别用于测量二维材料和纳米线的热导率。[8,9]
hm的定律,历史上有1个对电路至关重要的第一个数学关系,指出通过宏观材料的当前I与所施加的偏置电压V成正比。这是通过经验测量值的经验测量来支持的,这些电流和长度尺度在许多数量级上有所不同,并且绝大多数材料都具有。考虑到由于原子或离子在经典力学框架内的快速散射而导致的电子曲折运动中施加的电场引起的加速度,Drude Model 2成功地揭开了净电子漂移,平均速度与现场成比例,并因此是ohm ohm的第一个微观依据。在自由电子模型中考虑了费米统计数据,Sommerfeld 3能够对金属中的欧姆定律提供第一个量子机械依据。固体的量子理论将各种宏观固体的欧姆电导率与表征特定能带结构表征的带隙的(非)存在之间的差异。4取决于频带隙的存在和/或线性库比波响应理论5,6明确考虑实际带结构的明确考虑允许估计欧姆(也称为零偏置或线性电导率)g并提供微观材料为什么某些材料为导电者,某些半径和某些胰岛素是某些材料,某些材料是某些半径和某些岛化的。在1920年代,在量子力学的前夕,人们对欧姆定律产生了重新兴趣,欧姆定律被认为在原子量表上失败了。7电子在短距离上的运动是连贯的,与宏观材料中发生的不一致的电子碰撞形成了鲜明的对比,从而引起焦耳
其中,dE 表示电离辐射传递给体积元素中物质的平均能量,dm 表示体积元素中物质的质量。该能量可在任何定义体积上取平均值,平均剂量等于传递给该体积的总能量除以该体积的质量。吸收剂量的 SI 单位是焦耳/千克 (J.kg -1 ),称为戈瑞 (Gy)。 [1] 可接受限值 监管机构对事故的预测放射性后果(或发生事故时的潜在暴露)可接受的限值。 [1M] 加速器 一种加速带电粒子的装置。传统 X 射线管不视为加速器。 [2] 验收标准 用于评估结构、系统或部件执行其设计功能的能力的功能指标或状态指标值的规定界限。 [1] 事故 任何非预期事件,包括操作失误、设备故障和其他不幸事件,其后果或潜在后果从保护或安全的角度而言不可忽略。 [1] 事故条件 偏离正常运行的事件发生频率低于预期,但比预期的运行事件更严重,包括设计基准事故和设计扩展条件。 [1M] 事故管理 在事故发展过程中采取的一系列行动: (a) 防止升级为严重事故; (b) 减轻严重事故的后果
摘要 液态空气储能 (LAES) 处于中试规模。空气冷却和液化可储存能量;再加热可使空气在压力下重新蒸发,为涡轮机或发动机提供动力 (Ameel 等人,2013)。液化需要去除水和二氧化碳,防止结冰。本文提出随后对这种二氧化碳进行地质储存——为储能行业提供一种新型二氧化碳去除 (CDR) 副产品。它还评估了实施这种 CDR 方法的规模限制和经济机会。同样,现有的压缩空气储能 (CAES) 使用空气压缩和随后的膨胀。CAES 还可以增加二氧化碳洗涤和随后的储存,但需要额外付费。CAES 每公斤空气储存的焦耳比 LAES 少——每储存焦耳可能洗涤更多的二氧化碳。本世纪,实际运营的 LAES/CAES 技术无法提供全面的 CDR(Stocker 等人,2014 年),但它们可以提供 LAES 预计的 CO 2 处理量的约 4% 和当前技术 CAES 的不到 25%。本世纪,LAES CDR 可能达到万亿美元的规模(至少 200 亿美元/年)。由于需要额外的设备,改进的传统 CAES 存在更大但不太确定的商业 CDR 机会。CDR 对 LAES/CAES 使用量增长可能具有商业关键性,而必要的基础设施可能会影响工厂的规模和布局。理论上,低压 CAES 的建议设计在一个世纪内提供了全球规模的 CDR 潜力(忽略选址限制)——但这必须与竞争的 CDR 和储能技术进行成本核算。
诸如电动汽车中使用的锂离子电池(LIB)(EV)制成的电池组(EV)制成的电池组(EV)的电池组(EV)的热量损失,不均匀的温度分布和热失控,限制了其适用性,尤其是在高功率需求的情况下。本文分析了锂离子电池组中热量产生的原因,重点是它们对总热量产生的优势。它讨论了热产生,根本原因和影响参数引起的热问题。此外,它研究了冷却系统对峰值电池温度和温度均匀性及其设计,操作和性能参数的影响。审查表明,在设计冷却系统时,应在低排放率和高温期间与焦耳加热一起考虑熵加热,这是当EV在炎热天气下在高速公路上巡航时盛行的条件。电池的容量淡出是由温度依赖性因素(例如SEI层的生长,分离器耐药性上升和主动物质损失)引起的。因此,有效的电池冷却系统应维持15°C至35°C的温度范围和低于6°C的“ΔTmax”。在审查的冷却系统中,发现空气冷却简单且具有成本效益,但对于大型电池组来说效率低下。基于PCM的冷却技术提供了更高的温度均匀性,但对熔点敏感。液体冷却最有效,但增加了成本和复杂性。蒸发冷却可以作为空气和液体冷却之间的中间地面,并进一步研究将其付诸实践。电池热管理中未来的研究可能会通过考虑到电池运行方式的精确冷却需求来降低冷却系统的能源消耗。
A 安培 h 小时 oz 盎司 ac 交流电 hf 高频 o.d. 外径 AM 调幅 Hz 赫兹 Ω 欧姆 cd 坎德拉 i.d. 内径 p. 页 cm 厘米 in 英寸 Pa 帕斯卡 CP 化学纯 IR 红外线 pe 可能误差 c/s 每秒周期 J 焦耳 pp. 页数 d 天 L 朗伯 ppm 百万分率 dB 分贝 L 升 qt 夸脱 dc 直流电 lb 磅 rad 弧度 ° C 摄氏度 lbf 磅力 rh 相对湿度 ° F 华氏度 lbf � in 磅力 英寸 s 秒 dia 直径 lm 流明 SD 标准差 emf 电动势 ln 对数(底为 e)秒。节 eq 方程对数对数(底为 10)SWR 驻波比 F 法拉 M 摩尔 uhf 超高频 fc 英尺烛光 m 米 UV 紫外线图。数字 µ 微米 V 伏特 FM 调频 min 分钟 vhf 甚高频 ft 英尺 mm 毫米 W 瓦特 ft/s 英尺每秒 mph 英里每小时 N 牛顿 g 加速度 m/s 米每秒 λ 波长 g 克 mo 月 wk 周 gal 加仑 N � m 牛顿米 wt 重量 gr 格令 nm 纳米 yr 年 H 亨利 编号 数字 面积=单位2(例如,ft 2 、in 2 等);体积=单位3(例如,ft 3 、m 3 等)
伍德布里奇——下周三,在军团体育场举行的伍德布里奇高中年度毕业典礼上,219 名学生(其中 29 名现已入伍)将获得毕业证书。完整程序如下:游行队伍,“斯巴达人”,伍德布里奇高中乐队;祈祷。三一圣公会教堂牧师威廉·H·施曼斯牧师;星条旗,观众,手捧;欢迎词,特蕾莎·L·佩莱格里诺;毕业典礼主题,“战后家庭中的科学”;(a)“住房”,罗杰·D·肖费尔;(b)“健康”,格洛丽亚·A·基特尔;(c)“食物和衣服”,迈克尔·弗里曼;班级名册,校长约翰·P·洛佐;向教育委员会介绍班级,监督校长维克多·C·尼克拉斯;颁发毕业证书,教育委员会主席莫里斯·P·邓尼根 (Maurice P. Dunigan, Sr.);班级歌曲,由理查德·J·科利 (Richard J. Coley) 和查尔斯·B·德贝尔 (Charles B. Debe'r.) 填词,让·路易丝·波特 (Jean Louise Potter) 作曲;告别演讲,比阿特丽斯·M·约翰森 (Beatrice M. Johanscn);退场曲,“美国之歌”,乐队演奏。毕业生如下:(在武装部队)科学:Donald R. Anderson、William S. Arway、Howard R. Ashmore、John H. Baker、Joseph A. Banyaeski、Joseph A. Belko、J. Gorham Boynton、Michael W. Chinchar、Richard J. Coley、James H. Conimerton、Charles C. Deber、Jean E. Dettmer、James W. Dufell、Edwin F. Eaxley、Edward M. Eberle、J Oscar Feld、C. Robert Finn、Gerard J. Forlenza、Michael Freeman、Robert F. Hooban、William A. Humphrey、Thomas J. Hynes, Jr.、Betty Jane Killenberger、John J. Kolomatis、Thomas M. Korczowski、George J. Lucas、An. drew C. Ludwig、Joseph RW Makfinsky、W. Dana MsLellan、Richard M. Muehanic、Harry Burritt Mulliken、John M. Ozell、Joseph G. Parsler、Hans Pedersen、John L. Peterson、Angelo R. Petoletti、Raymond A. Petriek、Veronica B. -Sabo、Ralph M. Santainaria、RogerJD. Schaufele、Arline Lois Slotkin、Stephen J. Ungvary、'Herbert DeMaine Williams、John Yakubik、John、R. Zilai。古典组:Mary E. Anfield、Jean A. Christiansen、Margaret Aiin Grace、Marguery Johnson、Gloria Anne Kittell、Alice Marie Little、Kathiyn F. McEwen、Laura。乔伊斯·摩根森、阿琳·M·内梅特、玛丽·皮内利、萨利·E·波特、格雷琴·M·范西克尔。商业:Robert P. Anderson、John Balasz、Laura F. Besecker、Ellen V. Boehme、Jeanne E. Boland、Virginia Bonalsky、Frances M. Brennan、"•Eugene M. Breza、Mary Brodniak、Mary P. Burke、Audrey E. Burlew、Ger-trude C. Cheress、Margaiet T. Crowe、Helen C. Dancsees、Domin-nick R. Decibus、Mildred J. Demko、•'Theodore C. Dilworth、Mary A. Ducsak、Elaine Eymundsson、Rose M. Finan、Mary I. Fogas、Ann-marie F. Frank、^Victor F. Frey、Elizabeth V Fullerton、Thresa G. Gatson、Harry J. Glick、Dorothea L. Gregowitz、Kenneth T. Hansen、Carolyn I. Holcroft、Jean H.Hubert,Ann Rosalie Infusino,Mary A. Ivan,Ruth A. Jacobsen,“ William F. Jaeger,Raymond M. Jensen,Marie E. Johnson,Ira V. Jor- Jor- Jor-Dan,Edna L. Joule,Edna L. Joule,Florence Ki-Jiila” A,HEI“ * - Bert Kutcher,Lucille Lattanzio,Ethel Leffler,'-Martin D. Loftus,Dorothy Lazak•Robert Maseenik,Elizabeth Mezoy,Minna E. Moore,Ruth M. Moore,Ruth M. Moore,Katherine Nicola,Katherine Nicola,Katherine Nicola,Ecmlh Nixdorf,Ecmlh Nixdorf,Leona Nolan,Peter' ,格拉迪斯·林伍德(Gladys Ringwood),Mar-(续第7页)
•收费:表示电动汽车所有者要求的能量。•充电变量:表示在给定的时间阶段的电流和从充电器到电动电池电池传递的待处理的电能。•充电枢纽:该市由充电站组成的独立充电枢纽。•直流快速字符:是使用480伏系统的EV充电器。这些充电器可以在30分钟内将电动汽车电池充电至80%。也称为3级充电器。•电流:从充电器到EV的电荷流量速率。•EV:乘用车。•能量:电能存储在电场中或由电流运输。•千瓦(KW):一千瓦。•千瓦时(千瓦时):一千瓦小时。•2级充电器:通过240V或208V电气服务提供高速AC充电的EV充电器,并且在家庭,工作场所和公共收费方面很常见。这些充电器可以在3-10小时内将电动汽车电池充电至80%。•兆瓦小时(MWH):一百万(10 6)瓦小时。•功率:电路可以传递电能的速率。它等于电流和电压的乘积。•城市:假设城市在此问题声明中。•总负载:充电集线器为所有电动汽车提供的每小时累积能量。•电压:导致电子并因此流经电路的压力。•伏特(V):电压量度。•瓦特(W):一个权力单位。一个伏特是驱动电流一个安培的势能的差。一瓦等于每秒一个焦耳,与电路电路的电源相同,电势差为一伏,一个安培的电流。•瓦小时(WH):电能单位。一瓦小时等同于在一个小时内以一瓦的功率使用/传输的能量。
作为转换器的其余部分。设计师必须依靠制造商的设备型号(如果有)。由于其热性能低和电流能力有限,因此长期以来,PCB一直限于低功率转换(通常为10或100瓦,用于消费者的功能)。最近的改进,例如PCB嵌入技术[5],可以在PCB中插入电源设备,或者厚铜层的可用性使PCB对多千瓦范围的转换器的吸引力更具吸引力(3。在[6]中为3 kW,或[7]中的50 kW)。结果,一个完整的转换器(包括电源,控制等)可以仅使用PCB进行互连,并带有裸露的DIES功率半导体设备。此“合理化”组件的一个结果是,有关转换器的所有信息都可以在PCB设计软件[8]中可用:布局的完整说明,材料清单(组件列表)等。从理论上讲,可以使用此信息来生成模型(热,电气等)以自动化的方式。实际上,从PCB设计软件中生成模型并不是一件容易的事:除了上述复杂性问题外,模型准备还需要大量的用户交互。最近,霍夫曼等人。[9]提出了一种解决方案,该解决方案允许用户在PCB中选择导体并自动计算寄生电感,电阻和焦耳加热;该论文的目的是通过快速计算算法以及仅将域仅减少到几个导体,提供“立即的价值量化”。相比之下,我们此处提出的方法旨在为整个PCB生成模型(以更长的计算时间为代价)。一旦完成PCB设计,就计算了每个轨道的寄生元件(电容,电阻,电感及其耦合),并将计算在电路模型中,并插入PCB的所有组件,以构成电路的完整“虚拟原型”。