摘要 — 为了确保这种新兴器件的可靠性,控制导电桥式随机存取存储器 (CBRAM) 中的细丝生长至关重要。在这里,我们证明了扫描焦耳膨胀显微镜 (SJEM) 可用于检测和精确定位工作中的交叉 CBRAM 器件中的导电细丝。基于 Pd/Al 2 O 3 /Ag 堆栈的柔性存储器件首先在低温下在聚酰亚胺基板上精心制作。这些器件在低压 (<2V) 下显示置位和复位操作,开/关比高于 10 4 。在低电阻状态下操作时,SJEM 振幅图像显示出单个导电细丝存在下的热点。在 50kHz 下提取的有效热扩散长度为 4.3µm,并且还证明了热膨胀信号与耗散的焦耳功率成正比。我们相信,所提出的程序为可靠性研究开辟了道路,可将其应用于任何基于细丝传导的存储器件系列。索引词——CBRAM、柔性电子、SJEM、长丝定位。
作为其研究文化行动计划的一部分,该大学正在提供计划,以认识到更多员工类别的更广泛的贡献,特别是使用叙事简历和信用分类法的概念。它还扩大了内部研究资金的资格标准,使51名研究人员能够获得中央资金参加会议,培训机会,建立投标或合作伙伴关系,进行参与活动等。在2022 - 23年,并引入了桥梁资金,允许今年合同之间的6名研究人员保持雇用。研究文化种子基金,该基金去年支持12个项目(例如促进AHSS ECRS的机会,促进非洲研究人员之间的合作,倡导开放科学实践),现已嵌入敏捷基金中。
本演示文稿可能包含基于我们的信念和假设以及目前仅在本介绍之日起提供的信息的“前瞻性”陈述。前瞻性陈述涉及已知和未知的风险,不确定性和其他可能导致实际结果与前瞻性陈述的预期或暗示的因素。有关可能导致或促成此类差异的这些因素的进一步信息包括但不限于标题为“风险因素”中讨论的这些因素,这是我们最新的10-K表格和其他证券和交易委员会文件中的季度报告中所述的。我们不能保证我们将在我们的前进中实现计划,意图或期望 - 看待的陈述,并且您不应过分依赖我们的前进陈述。有关新产品,功能或功能的信息旨在概述我们的一般产品指导,不应仅出于信息目的而依靠,并且不应将其纳入任何合同中,而不是承诺,承诺或法律义务来提供任何材料,代码或功能。为我们的产品所描述的任何功能或功能的开发,释放和时机仍由我们自行决定。我们不承担更新前瞻性陈述的义务,也不打算更新。
2024年2月20日,荷兰·康拉德先生总裁兼项目经理中美洲转换服务,有限责任公司1020君主圣套房300肯塔基州列克星敦40513 NEA-2024-01尊敬的康拉德先生:这封信涉及到能源部(doe)对事实和核定范围内的情况的调查,这些信件涉及到拟议的情况下,六氟化物(DUF6)转换设施。企业评估办公室的执法办公室在2023年8月31日的调查摘要中向中美洲转换服务有限公司(MCS)提供了调查结果。2023年11月2日召开了执法会议,您和您的工作人员会议讨论了摘要和MCS的回应中概述的发现。封闭,您会发现执法会议和出勤阵容的摘要。DOE认真对待涉及其承包商的核安全缺陷指控。对这些指控的调查表明,MC在安全管理和执行核工作时严重缺乏关注,并且MCS并未充分自我识别和解决这些问题,这具有很高的安全意义。具体来说,在管理流程,培训和资格以及质量改进的领域中揭示了缺陷。基于对此事的证据的评估,包括在执法会议上提出的信息,得出的结论是,MCS违反了可在10 C.F.R.下执行的要求。第820部分,《 DOE核活动的程序规则》,包括10 C.F.R. 因此,没有提供缓解措施。第820部分,《 DOE核活动的程序规则》,包括10 C.F.R.因此,没有提供缓解措施。第830部分,核安全管理,A子部分,质量保证要求。因此,DOE在此发出封闭的初步违规通知(PNOV),该通知引用了三个严重性II级违规行为,总体民事罚款为382,500美元。由于MC尚未承认这些核安全性缺陷,因此他们没有进行因果分析或采取适当的纠正措施以防止复发。
2024 年 4 月 14 日 — Universal Matter 将碳升级为石墨烯和相关先进材料,以提高您的创新的性能和可持续性。Flash Joule ...
• 锂离子储能价格为 200-350 美元/千瓦时 电池占据成本主导地位 • Joule Hive 成本可忽略不计 • 购买完整的发电厂比锂离子电池更划算
➢通过Josephson和Quantum Hall效应定义H,kibble(瓦特)平衡:Nist(US),NRC(CA),Metas(SW),LNE(FR),Kriss(Kriss(Kr),MSL(NZ),MSL(NZ),BIPM等。➢joule余额:nim(CN)
nogy,纳米材料必须通过不受任何影响其特性的快速和可扩展过程来综合。为了应对这一挑战,我们和其他人最近报道了Graphene的合成,[1-3],以及混合相的MOS 2和WS 2,[4]高渗透合金NPS,[5,6] Nanodiamond,[7],[7]和其他纳米酸盐和其他纳米型使用电热闪光灯闪光灯焦耳热热效应。在电气放电期间产生的强烈黑体辐射后,石墨烯产品称为“闪光石墨烯”。闪光焦耳加热允许非晶碳的转化,包括诸如碎石橡胶轮胎等废物,[8]来自塑料回收的灰烬副产品,[9]或垃圾填充级混合塑料废物,[10] [10]到石墨烯晶体中。此外,闪光石墨烯晶体是涡轮形成的,并且沿C轴表现出不同程度的层到层的不良方向。[1]这种涡轮质石墨烯构成纳米结构依赖性的物质,包括表面活性剂溶液中的增强溶解度[1]和改变的带结构。[11]焦耳加热过程的可扩展性和环境友好性,以及合成产品的涡轮质性质,使Flash Joule加热一种有趣的合成技术,可带来进一步的研究和分析。尽管Flash Joule加热具有巨大的实用性,但本质上很难研究。闪光石墨烯的形式过程仅在数百毫秒内发生。这些波动很难通过实验控制,这使得它在传统的网格搜索中对映射过程 - 结构 - 专业关系的关系充满挑战。例如,Tang等。更重要的是,当前的闪光灯加热反应器在当前的放电轮廓上不提供控制,从而向每种反应增加了随机元素,这取决于电路向样本接触的瞬时波动。由于这些因素,在闪光灯加热过程中驱动大量纳米晶体形成的参数仍然模棱两可。同时,新兴的文献体系表明机器学习(ML)是材料科学基础研究的强大工具。[12–18]虽然ML经典地考虑了一种用于预防过程故障的工业工具,但使用ML询问大型参数空间可以在低时期内对新技术产生见解。使用ML探索过程 - 结构 - 专业关系 - 管理良好理解过程的船只,例如化学蒸气沉积和量子点综合,并根据其结果争论,ML将使研究人员能够研究
1:https://news.sap.com/2024/05/aws-sap-generative-ai-new-innovation/ 2:截至8-6-2024 https://help.sap.sap.sap.sap.sap.sap.sap.sap.sap.sap.sap.sap/jouide/serviceguide/data-cguide/data-center-data-center-supporter-support---by-by-by-by-by-jeule /////