从图中可以明显看出6(a),极化随温度升高而降低。对于在可耐受范围内的输出,电路的运行温度为1至9K。在该温度框架内,记录的最低能量为0.0237 eV,如图6(b)。扭结能量的计算在基于QCA的设计电路中很重要。扭结能量是两个相邻或相邻细胞之间的能量差。两个细胞之间的扭结能取决于QCA细胞的维度以及相邻细胞之间的间距。它与温度无关。它是设计稳定性的最显着参数之一。具有最低扭结能量的状态是最稳定的状态。使用公式:
这是对 Anthony Afful-Dadzie 撰写并发表在 Joule 5 (2021) 1634 e 1643 上的“到 2050 年实现全球 100% 能源转型:发展中经济体的梦想?”的讨论和回应。在研究了 Bogdanov 等人 (2021) 在 Afful-Dadzie (2021) 上的文章后,该预览对发展中经济体向 100% 可再生能源和可持续技术进行能源转型的可行性提出了担忧。尽管作者正确地指出了世界发达国家和发展中国家可再生能源近期增长的差距,并强调了发展中国家能源转型“资金可用性”这一相关问题,但该预览未能将能源转型融资问题,特别是发展中国家的能源转型融资问题置于特定背景中,并且用模糊和不科学的例证简化了复杂而繁琐的成本最优能源转型模型。对此,Bogdanov 等人 (2021) 的作者对 Afful-Dadzie (2021) 中提出的问题进行了背景化、澄清和驳斥。© 2022 Elsevier Ltd. 保留所有权利。
两年前,Sapinsider研究的60%的受访者与SAP有关,报告说他们从未听说过该产品,或者不熟悉它。在2023年,有48%的受访者仍在该类别中。但是,今年的数字发生了很大的变化,有64%的受访者报告说熟悉或非常熟悉SAP的崛起。这是通过从与此数据保持一致的Sapinsider事件的客户交互中收集的洞察力来证实的。补充说,SAP合作伙伴表示,更多的客户现在正在询问使用SAP的Rise实施选项,而不是寻求有关产品的基本信息。数字还反映了用户群的重大变化。这部分是因为SAP更多地集中在云ERP消息传递上,并通过SAP加强了SAP作为2024年Sapphire 2024和Teched期间创新的平台。此外,SAP还强调了在这些事件中使用SAP演示的崛起,特别是像Joule这样的AI功能,使客户可以更好地了解产品中可用的产品。另外,考虑到SAP包装的上升
存储成本 Joule 在线杂志 1 发表了关于存储成本水平的详细分析,Vox 2 也对此进行了报道。简而言之,他们分析了存储作为可再生能源发电的后备能源需要达到的“能源存储容量成本”水平,以便让其价格实惠。他们分析了四个地方持续时间最长的天气模式(这些地方需要这种后备能源)和可再生能源发电的成本,并由此得出了可以淘汰化石燃料后备电厂的存储目标成本。在欧洲,长期的可再生能源低发期是“kalte dunkel Flaute” 3 。每隔几年,这将会覆盖欧洲大部分大陆的两周时间。如果将地理范围缩小到几个国家,持续时间缩小到几天,那么这种情况就会经常发生,每年都会发生很多次。如果考虑到夜间可以忽略不计的能源生产,那么这种情况就非常频繁了。让我担心的是,即使看过原文,也没有对“储能容量成本”做出定义 - 它到底是什么?♦ 每年每兆瓦时的资本成本?♦ 储能的平准化成本?♦ 电力的平准化成本,即包括购买输入电力的成本?它们的成本以美元/千瓦时为单位,因此乘以一千即可得到我们的美元/兆瓦时(我没有进行货币转换,因为货币波动太大)。他们的目标是“储能容量成本为 10-12 美元/千瓦时”= 100% 可用性电网的 10-12k 美元/兆瓦时。对于 95% 可用性电网,“储能容量成本”门槛为 150 美元。以我们的 40MW 200MWh 电厂为例,♦ 假设它每天运行 4.5 小时,每年运行 350 天,每年将产生 63,000MW 的电力,电厂成本为 6,000 万美元,这相当于每发电 MWh 的资本支出为 0.95 美元;加上当年 5% 的资本成本,这正好上升到 1 美元。◊ 将持续时间加倍,TES CAES 的资本支出将增加约 30%,CCGT CAES 的资本支出将增加约 15%,因此持续时间较长的电厂每 MWh 的资本支出更便宜。◊ 这种版本的“储能容量成本”、LCOS 和 LCOE 不会从规模中受益,因为它们主要取决于电力吞吐量,而不是持续时间。♦ 我们估计的 LCOS 为 68 美元/MWh。♦ 我们估计的 LCOE 为 110 美元/MWh。 1 https://www.cell.com/joule/fulltext/S2542-4351(19)30300-9 2 https://www.vox.com/energy-and-environment/2019/8/9/20767886/renewable-energy-storage-cost- 电力 3 https://energytransition.org/tag/dunkelflaute/
2011 年 1 月 - 2016 年 5 月 Honeywell Hymatic,雷迪奇项目工程师 一家在航空航天、国防和空间领域运营的工程公司,专门从事高压气体供应系统和低温技术。该职位的主要职责包括编写和维护测试程序。验证和编写与现有产品和未来产品相关的构建规范。具有设计、开发和制造定制焦耳汤姆森冷却器的经验,用于弹道应用,符合客户规格和定制客户接口的要求。这些复杂的高压精密组件的外壳大约有 AA 电池那么大,由微型热交换器、加压波纹管阀门驱动装置和多种电阻焊接操作组成。开发和构建适合测试产品的测试台,以满足客户性能要求。分析和改进现有的定制微型制造工艺。
陈实验室的研究重点是纳米技术和生物电子学,以智能纺织品、可穿戴设备和体域网络的形式应用于能源、传感和治疗。陈团队目前的 H 指数为 80,出版了 2 本书、200 篇期刊论文,其中 110 篇作为《化学评论》、《化学学会评论》、《自然材料》、《自然电子》、《自然通讯》、《科学进展》、《焦耳》、《物质》、《先进材料》等期刊的相应贡献。该团队还申请了 14 项美国专利,并获得了 1 项授权。该团队的努力最近获得了 Vebleo 研究员、Informa 评选的 30 位值得关注的生命科学领袖、加州大学洛杉矶分校赫尔曼研究员奖、先进材料新星奖、ACS 纳米新星讲师奖、化学学会评论新兴研究员奖等多项奖项的认可。除了研究之外,他还是《生物传感器》和《生物电子学》的副主编。
电场和磁场为无机材料的合成、加工和微观结构调整提供了额外的自由度。[1] 与传统烧结技术相比,电流辅助烧结 (ECAS) 技术因显着增强和加速了烧结动力学而具有极好的前景,在先进材料的加工中非常有前景。[2 – 7] 从 100 多年前的第一项专利开始,如今专利和文献中描述了 50 多种不同 ECAS 技术原理。[3] 通常,可通过以下方式实现高加热速率和低停留时间的短期烧结:1) 在导电工具中间接加热非导电粉末,通过焦耳效应加热并将热量传导给粉末; 2) 通过感应或热辐射间接加热非导电粉末,直至达到起始温度,此时电流开始流过样品,因此可以直接加热;3) 通过焦耳效应直接将能量耗散在样品内,直接加热导电粉末;4) 通过样品突然释放存储在电容器中的能量,超快速直接加热导电粉末。粉末和工具材料的电导率主要决定样品是直接加热还是间接加热。金属、合金和特殊陶瓷材料,如 TiC、TiN、Ti(C,N)、MAX 相(M = 过渡金属,A = A 组元素,X = C 或 N)、WC、TiB2 和 ZrB2,作为超高温陶瓷 (UHTC),可以在场辅助烧结技术/放电等离子烧结 (FAST/SPS) 模式下直接加热,因为它们的电导率比通常用作工具材料的石墨的电导率高几个数量级。反之亦然,大多数氧化物(Al2O3、ZrO2、YSZ、MgO、CeO2、掺杂钆的二氧化铈 [GDC] 等)和其他陶瓷,如 BN、Si3N4、SiC 和 B4C,由于其低电导率,则间接加热。通过施加单轴压力可以进一步提高 ECAS 技术的效率,这还可以支持烧结动力学,从而能够降低烧结温度
锂金属阳极固态电池是电动汽车中能量密度最高的电池,过去十年来,人们在研发方面投入了大量资金。虽然大多数研究都集中在防止锂金属枝晶最终导致电池短路,但这些短路的性质仍然难以捉摸。软短路尤其受到关注,甚至在已发表的数据中也未得到认可。在这里,我们全面概述了复合聚合物电解质固态锂金属电池中软短路的检测和分析,以及对软短路动力学的基本理解。由焦耳热、化学反应性和其他过程驱动的微秒到毫秒时间尺度上的软短路瞬时解除短路限制了人们确定电池是否短路的能力。我们提供了多种实验方法来检测和分析任何类型电池中的软短路,作为所有电池研究人员的资源。
标准的其他部分使用(或基于)术语“流明”,但流明是针对人类的。流明基于人类视觉系统(基于眼睛视网膜中的视锥细胞的数学函数),但植物没有视锥细胞,因此需要不同的度量标准。该标准采用光合光效 (PPE) 作为园艺照明要求的度量标准。PPE 认识到植物通过光合作用产生能量。PPE 是每单位能量产生的可见光、红外光和紫外光的量度。PPE 的单位是微摩尔 (µmol) 每焦耳 (J)。您不必翻阅化学教科书 - µmol/J 值越高,光源提供每输入电能的光合光子通量就越高效。PPE 是在 ANSI/ASABE S640《植物(光合生物)的电磁辐射量和单位》中开发的一种度量标准。
简介:在过去的几十年中,碳纳米材料(例如碳纳米纤维(CNF)和石墨烯)由于其宏伟的特性而引起了强烈的科学兴趣[1,2]。关于石墨烯的大部分研究都是针对合成高质量和大面积石墨烯方法的探索。有希望的方法是脉搏激光沉积和化学蒸气沉积。虽然在理解石墨烯合成方面已经取得了重要成就,但它们的形成机制尚不清楚。现场技术的最新进展现在为研究原子水平研究固相相互作用的新可能性提供了新的可能性。在这里,我们报告了通过原位透射电子显微镜(TEM)直接观察到铜含有铜纳米纤维(CU-CNFS)的结构转化。实验:使用kaufmann型离子枪制造Cu-CNF(iontech。Inc. Ltd.,模型3-1500-100FC)。所使用的样品是尺寸为5x10x100 µm的市售石墨箔。通过在CNFS生长过程中连续供应Cu,在室温下用1 keV ar +离子辐射石墨箔的边缘。在其他地方详细描述了离子诱导的CNF生长机理的细节[3]。然后将Cu-CNF安装在200 kV的TEM(JEM2010,JEOL CO.,JEOL CO.)的阴极微探针上,并研究了Cu-CNFS向石墨烯的结构转化,在电流 - 电压(I-V)测量过程中进行了研究。结果和讨论:在I-V测量过程中,高温是通过Cu-CNF结构中的Joule加热获得的。焦耳CNF的加热导致其表面石墨化,最后在转化为严重扭曲的石墨烯中。tem图像表明,最初,CNF在本质上是无定形的,而I-V过程中的电流流动引起了CNF的晶体结构的急剧变化,形成了石墨烯的薄层(1-3层)。作为结果,在产生的电流大大增加的情况下,改进了结构的电性能,比初始值高1000倍(从10 -8到10 -5 a)。该过程采用三个步骤进行:Cu纳米颗粒的聚集,无定形碳扩散到Cu中,以及在进一步加热下的Cu纳米颗粒的电迁移。