摘要:通常用狭窄油通道的牵引力变压器使用ODAF或“定向空气强制的油”方法冷却,在该方法中,其温度在很大程度上取决于绕组的焦油热量,变压器中的共轭热传递,以及通过油冷却器的二次热量释放,以及油泵产生的油液液泵。既不有资格预测这种类型的变压器中的时间和空间温度变化,均未获得热 - 电动类比和CFD模拟方法。 在当前工作中,分布式参数模型是为牵引力变压器和油冷却器而建立的,分别假定在油流方向上的一维温度线。 然后,这两个模型通过其界面的流量,温度和压力连续性与油泵和管道的集体参数结合,从而导致了油导向和空气牵引力变压器的动态热量耗散模型的推导。 另外,为其数值解提供了有效的算法,并进行了温度上升实验以进行模型验证。 最后,研究了牵引力变压器中动态热量耗散的基本性,并研究了环境温度的影响。均未获得热 - 电动类比和CFD模拟方法。在当前工作中,分布式参数模型是为牵引力变压器和油冷却器而建立的,分别假定在油流方向上的一维温度线。然后,这两个模型通过其界面的流量,温度和压力连续性与油泵和管道的集体参数结合,从而导致了油导向和空气牵引力变压器的动态热量耗散模型的推导。另外,为其数值解提供了有效的算法,并进行了温度上升实验以进行模型验证。最后,研究了牵引力变压器中动态热量耗散的基本性,并研究了环境温度的影响。
*毕业于赫尔辛基大学(科学硕士,计算机科学硕士),目前是博士生,研究员和讲师(数据库,大数据,多模型数据库,方法和工具,用于利用赫尔斯基大学(University of Helsinki)在1993年与Oracle产品一起使用,从1993年起使用,从1993年开始使用oracle产品,从1990年开始使用Data Data和Data Data Data Data&Data Data&Data Data&Data Database!∗奇迹芬兰Oy ∗ oracle Ace主管,甲骨文开创性大使 * EOUC(EOUC(EMEA Oracle用户小组社区)大使)∗列为芬兰对IT领域的前100个影响之一(2015,2016,2017,2017,2017,2017,2017,2017,2017,2017,2017,2017,2017,2017,2018) 2015年),现实世界SQL和PL/SQL的合着者:专家的建议(Oracle Press,2016)
• 以经济环保的方式回收稀有金属并修复锂离子电池的阳极。预计到本世纪末,锂离子电池的产量将增长两倍。目前,只有不到 5% 的电池被回收利用。 • 光激活分子机器可以杀死“革兰氏阳性”细菌,这些细菌的厚细胞壁可以抵抗抗生素。这些分子具有高度选择性,不太可能引起广谱抗生素的副作用,广谱抗生素会不加区别地杀死“坏”细菌和“好”细菌,并导致耐药性。 • 开发了一种锂化涂层,可有效防止锂电池上形成枝晶,从而减少短路并延长电池寿命。 • 使用闪光焦耳加热生产氮化硼 (BN) 薄片,这是一种备受追捧的 2D 材料。BN 通常用作润滑剂、添加到化妆品中的软化剂或陶瓷和金属化合物的添加剂,以提高耐热性。它还被用作催化剂来破坏 PFAS,CDC 声称 PFAS 对人体健康构成威胁。• 在醋酸钾存在下加热塑料废物,产生具有纳米级孔隙的颗粒,这些颗粒可以捕获二氧化碳分子。用这种材料制成的过滤器可以捕获来自发电厂烟囱等的二氧化碳排放,成本不到竞争方法的四分之一。
石墨烯已被证明是复合材料的特殊增强添加剂,但其合成的高成本在很大程度上阻止了其在工业规模上的增加。Flash Joule加热提供了一种快速的,批量的方法,用于从煤炭材料(例如冶金可乐(MC))合成石墨烯,进入冶金焦源浅灰灰石墨烯(MCFG)。在这里,这项工作研究了比文献中先前报道的纳米纤维含量含量更高的石墨烯 - 环氧复合材料的特性。具有20至50 wt%的MCFG的复合材料。MCFG的比例为1:2:DGEBA,年轻的模量增加了92%,比例为1:3,硬度增加了140%。 在MCFG的1:4比率下,DGEBA,抗压强度和最大应变分别增加145%和61%。 在MCFG的1:3比例时:DGEBA,韧性增加了496%。 最后,以MCFG的1:1比率:DGEBA,温室气体排放,用水和能耗分别降低了33%,47%和34%。 作为FG坠落的成本,因为它可以由MC(如MC)(如MC),没有溶剂或水的毫秒而产生,因此前景有望在复合材料中进行高载荷。MCFG的比例为1:2:DGEBA,年轻的模量增加了92%,比例为1:3,硬度增加了140%。在MCFG的1:4比率下,DGEBA,抗压强度和最大应变分别增加145%和61%。 在MCFG的1:3比例时:DGEBA,韧性增加了496%。 最后,以MCFG的1:1比率:DGEBA,温室气体排放,用水和能耗分别降低了33%,47%和34%。 作为FG坠落的成本,因为它可以由MC(如MC)(如MC),没有溶剂或水的毫秒而产生,因此前景有望在复合材料中进行高载荷。在MCFG的1:4比率下,DGEBA,抗压强度和最大应变分别增加145%和61%。在MCFG的1:3比例时:DGEBA,韧性增加了496%。最后,以MCFG的1:1比率:DGEBA,温室气体排放,用水和能耗分别降低了33%,47%和34%。作为FG坠落的成本,因为它可以由MC(如MC)(如MC),没有溶剂或水的毫秒而产生,因此前景有望在复合材料中进行高载荷。
刺激反应性水凝胶可以感知环境提示并相应地改变其体积,而无需其他传感器或执行器。这可以显着降低所得设备的大小和复杂性。但是,由于水凝胶的响应量变化通常是统一的,因此它们需要局部和随时间变化的机器人应用挑战。在此提出了使用可寻址和可调的水凝胶构建块(称为软素素执行器(SVA) - 具有可编程时空变形的均方根水凝胶结构。svas,利用快速反应速度和PNIPAAM的共溶性特性来生成高度相互连接的水凝胶孔结构,从而使可调的肿胀比,溶胀率和Young的模量在一个简单的,单性的铸造过程中与SVA合成sva sva-sva Uns.sva compatibles compatible compatible compatience compatience compatible compatible cossible。通过设计每个体素的位置和肿胀特性,并激活体素中的嵌入式焦耳加热器,可以实现时空变形,从而实现了可以使异构水凝胶结构操纵物体,避免障碍物,产生行进波和变形的形状。一起,这些创新为可调,不受限制和高度自由度的水凝胶机器人铺平了道路,这些机器人可以适应并应对非结构化环境中不断变化的条件。
尽管近年来,纳米材料的原位透射电子显微镜(TEM)已变得很重要,但样品制备中的困难限制了对电性能的研究数量。在此,提出了单个1D和2D材料的基于支持的准备方法,该方法产生了可重复的样品转移,以通过原位tem进行电气研究。机械刚性支撑网格通过聚焦离子束以最小的损坏和污染来促进转移并接触到原位芯片。通过不同的纳米材料(包括WS 2的单层)来评估转移质量。可能的研究涉及各个纳米材料水平上的结构特性与电特性之间的相互作用,以及电流下的失效分析或电流,焦耳加热和相关效果的研究。TEM测量值可以通过在相同对象上进行的其他相关显微镜和光谱进行富集,并具有允许在几微米范围内具有空间分辨率的表征的技术。尽管为原位tem开发,但目前的转移方法也适用于将纳米材料转移到类似的芯片中,以进行进一步的研究,甚至用于在潜在的电气/光电/传感设备中使用它们。
4D 打印是一个新兴领域,其中 3D 打印技术用于对刺激响应材料进行图案化以创建变形结构,以时间为第四维。然而,目前用于 4D 打印的材料通常较软,在形状变化过程中的弹性模量 (E) 范围为 10 −4 至 10 MPa。这限制了所得结构的可扩展性、驱动应力和承载能力。为了克服这些限制,多尺度异质聚合物复合材料被引入作为一种新型的刚性、热响应 4D 打印材料。这些油墨的 E 比现有的 4D 打印材料高四个数量级,并提供可调节的电导率,可同时实现焦耳加热驱动和自感应功能。利用电控双层作为构建块,设计和打印出一种可变形为 3D 自立式起重机器人的平面几何体,与其他 3D 打印执行器相比,在重量标准化的起重负载和致动应力方面创下了新纪录。此外,该油墨调色板还用于创建和打印平面晶格结构,这些结构可变形为各种自立式复杂 3D 形状。这些贡献被集成到 4D 打印电控多步态爬行机器人晶格结构中,该结构可承载自身重量的 144 倍。
对更高能量密度的不懈追求对电池安全性提出了挑战。[8,9] 更薄的隔膜会增加穿孔的危险,而锂金属的使用则有可能引起枝晶穿透和短路。发生短路时,快速自放电产生的大电流通过低电阻电子通路产生焦耳热,使隔膜和电极材料的温度达到击穿点(150-250°C),[10] 引发一系列放热反应和热失控。[11,12] 内部短路可能是由机械变形(例如在钉刺试验期间 [13,14] )和过度充电等外部原因引起的,但也可能由于没有明显的外部原因而发生,例如最近发生的停放电动汽车自燃事件。[15] 推测的机制包括电池中导电丝的生长,最终会穿透隔膜并使电池短路。 [16] 目前已开发出各种防止和管理锂离子电池热失控的方法,包括压力释放孔、[17] 防止过度充电的先进电池管理系统、设计为断裂以便电子隔离短路的集电器,[18] 以及阻燃添加剂。[19]
柔软和兼容的执行器的开发引起了极大的关注,因为它们在软机器人,可穿戴设备,触觉和辅助设备中的使用。尽管进步了数十年,但完全数字印刷的执行器的目标尚未得到充分证明。数字打印允许快速自定义执行器的几何形状,尺寸和变形程序,并且是朝着大规模定制用户特异性可穿戴设备和软机器人系统的一步。在这里,证明了一组材料和方法,用于快速制造3D打印的液晶弹性体执行器,这些液晶弹性体执行器通过由液体金属(LM)组成的印刷焦耳加热器进行电刺激 - 填充的弹性弹性体复合材料。与其他基于Ag的墨水不同,该LM弹性体复合材料不含烧结,可以使室温打印,并且可以拉伸,可以循环驱动,而无需导体的电气或机械故障。通过优化打印参数,并改善光聚合设置,这是一种弯曲到320°角的印刷执行器,比以前的LCE执行器低功耗。我们还展示了一种自定义的UV聚合设置,该设置允许在≈90S中对LCE执行器进行照片保存,即与以前的作品相比快> 500倍。快速的光聚合能够迈向多层执行器的3D打印,并且是朝着全数字打印的机器人和可穿戴设备进行大规模定制的一步。
1工程,应用材料,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州大学广场15801。2机械与核工程,宾夕法尼亚州立大学,宾夕法尼亚州大学公园,16802,美国3应用研究实验室,宾夕法尼亚州大学公园,宾夕法尼亚州16802美国摘要:结构性 - 托管加工关系已在添加性生产的TI-6AL-4V合金中进行了研究。使用原位电子显微镜(EM)以中等电流密度为5x10 5 A/cm 2进行5分钟进行处理,并通过抑制大量散热器的焦油加热,以使温度升高<180°C,并且机械性能不及时化。结果表明,虽然晶粒尺寸增加了约15%,但纳米性质增加了16%。这归因于明显的脱位产生,再生和聚类以及缺陷愈合。最终,残余应变降低,内在强度显着增加,这是由电流加工样品的高泰勒因子所证明的。这种新颖的加工技术代表了可能对高温处理或常规方法敏感的零件进行主动控制微观结构和内部缺陷的替代途径。关键字:电流处理;纳米纳斯;电子反向散射衍射(EBSD);透射电子显微镜(TEM); Schmid因子;泰勒因子。1。简介