摘要:这是一篇专门讨论互补性-语境性相互作用以及与贝尔不等式相关的评论。从互补性开始讨论,我指出语境性是它的种子。玻尔语境性是可观测量结果对实验语境的依赖性;对系统-仪器相互作用的依赖性。从概率上讲,互补性意味着联合概率分布 (JPD) 不存在。人们必须使用语境概率而不是 JPD。贝尔不等式被解释为语境性的统计检验,因此是不相容性的。对于与语境相关的概率,这些不等式可能会被违反。我强调,贝尔不等式测试的语境性是所谓的联合测量语境性 (JMC),即玻尔语境性的特例。然后,我研究了信号(边际不一致性)的作用。在 QM 中,信号可以被视为一种实验产物。然而,实验数据通常具有信号模式。我讨论了信号的可能来源——例如,状态准备对测量设置的依赖性。原则上,可以从信号阴影的数据中提取“纯语境性”的度量。这个理论被称为默认语境性 (CbD)。它导致不等式,其中有一个量化信号的附加项:Bell–Dzhafarov–Kujala 不等式。
前言 第 ix 页 1 简介 1 1.1 智能代理 1 1.2 关于环境的推理 4 1.3 为什么要进行不确定推理? 5 1.4 多智能体系统 7 1.5 合作式多智能体概率推理 11 1.6 应用领域 13 1.7 参考文献 14 2 贝叶斯网络 16 2.1 第 2 章指南 16 2.2 贝叶斯概率论基础 19 2.3 使用 JPD 进行信念更新 23 2.4 图 24 2.5 贝叶斯网络 27 2.6 本地计算和消息传递 30 2.7 通过多个网络传递消息 31 2.8 大规模消息传递的近似值 33 2.9 参考文献 35 2.10 练习 36 3 信念更新和聚类图 37 3.1 第 3 章指南 38 3.2 聚类图 40 3.3聚类图中的消息传递 43 3.4 与 λ − π 消息传递的关系 44 3.5 非退化循环中的消息传递 47 3.6 退化循环中的消息传递 53
前言 第 ix 页 1 简介 1 1.1 智能代理 1 1.2 关于环境的推理 4 1.3 为什么要进行不确定推理? 5 1.4 多智能体系统 7 1.5 合作式多智能体概率推理 11 1.6 应用领域 13 1.7 参考文献 14 2 贝叶斯网络 16 2.1 第 2 章指南 16 2.2 贝叶斯概率论基础 19 2.3 使用 JPD 进行信念更新 23 2.4 图 24 2.5 贝叶斯网络 27 2.6 本地计算和消息传递 30 2.7 通过多个网络传递消息 31 2.8 大规模消息传递的近似值 33 2.9 参考文献 35 2.10 练习 36 3 信念更新和聚类图 37 3.1 第 3 章指南 38 3.2 聚类图 40 3.3聚类图中的消息传递 43 3.4 与 λ − π 消息传递的关系 44 3.5 非退化循环中的消息传递 47 3.6 退化循环中的消息传递 53
前言 第 ix 页 1 简介 1 1.1 智能代理 1 1.2 关于环境的推理 4 1.3 为什么要进行不确定推理? 5 1.4 多智能体系统 7 1.5 合作式多智能体概率推理 11 1.6 应用领域 13 1.7 参考文献 14 2 贝叶斯网络 16 2.1 第 2 章指南 16 2.2 贝叶斯概率论基础 19 2.3 使用 JPD 进行信念更新 23 2.4 图 24 2.5 贝叶斯网络 27 2.6 本地计算和消息传递 30 2.7 通过多个网络传递消息 31 2.8 大规模消息传递的近似值 33 2.9 参考文献 35 2.10 练习 36 3 信念更新和聚类图 37 3.1 第 3 章指南 38 3.2 聚类图 40 3.3聚类图中的消息传递 43 3.4 与 λ − π 消息传递的关系 44 3.5 非退化循环中的消息传递 47 3.6 退化循环中的消息传递 53
前言 第 ix 页 1 简介 1 1.1 智能代理 1 1.2 关于环境的推理 4 1.3 为什么要进行不确定推理? 5 1.4 多智能体系统 7 1.5 合作式多智能体概率推理 11 1.6 应用领域 13 1.7 参考文献 14 2 贝叶斯网络 16 2.1 第 2 章指南 16 2.2 贝叶斯概率论基础 19 2.3 使用 JPD 进行信念更新 23 2.4 图 24 2.5 贝叶斯网络 27 2.6 本地计算和消息传递 30 2.7 通过多个网络传递消息 31 2.8 大规模消息传递的近似值 33 2.9 参考文献 35 2.10 练习 36 3 信念更新和聚类图 37 3.1 第 3 章指南 38 3.2 聚类图 40 3.3聚类图中的消息传递 43 3.4 与 λ − π 消息传递的关系 44 3.5 非退化循环中的消息传递 47 3.6 退化循环中的消息传递 53
前言 第 ix 页 1 简介 1 1.1 智能代理 1 1.2 关于环境的推理 4 1.3 为什么要进行不确定推理? 5 1.4 多智能体系统 7 1.5 合作式多智能体概率推理 11 1.6 应用领域 13 1.7 参考文献 14 2 贝叶斯网络 16 2.1 第 2 章指南 16 2.2 贝叶斯概率论基础 19 2.3 使用 JPD 进行信念更新 23 2.4 图 24 2.5 贝叶斯网络 27 2.6 本地计算和消息传递 30 2.7 通过多个网络传递消息 31 2.8 大规模消息传递的近似值 33 2.9 参考文献 35 2.10 练习 36 3 信念更新和聚类图 37 3.1 第 3 章指南 38 3.2 聚类图 40 3.3聚类图中的消息传递 43 3.4 与 λ − π 消息传递的关系 44 3.5 非退化循环中的消息传递 47 3.6 退化循环中的消息传递 53