1. 疫苗和免疫,世界卫生组织,https://www.who.int/health-topics/vaccines-and- immunization#tab=tab_1(上次访问时间为 2023 年 1 月 28 日)(“目前,免疫每年可防止 350 万至 500 万人死亡……”)。2. Eli S. Rosenberg、David R. Holtgrave、Vajeera Dorabawila、MaryBeth Conroy、Danielle Greene、Emily Lutterloh、Bryon Backenson、Dina Hoefer、Johanne Morne、Ursula Bauer 和 Howard A. Zucker,按疫苗接种状况划分的成人新增 COVID-19 病例和住院人数——纽约,2021 年 5 月 3 日至 7 月 25 日,70 M ORBIDITY & M ORTALITY W KLY. R EP。 1150, 1151 (2021),https://www.cdc.gov/mmwr/volumes/70/wr/pdfs /mm7034e1-H.pdf;Alison Galvani、Seyed M. Moghadas 和 Eric C. Schneider,《美国快速推出疫苗接种服务避免死亡和住院》,C OMMONWEALTH F UND(2021 年 7 月 7 日),https://www.commonwealth fund.org/publications/issue-briefs/2021/jul/deaths-and-hospitalizations-averted-rapid-us-vaccination-rollout。 3. Grace Sparks、Lunna Lopes、Alex Montero、Liz Hamel 和 Mollyann Brodie,KFF COVID-19 疫苗监测:2022 年 4 月,KFF(2022 年 5 月 4 日),https://www.kff.org/coronavirus-covid-19/poll-finding/kff-covid-19-vaccine-monitor-april-2022/。4. 请参阅 Erik Skinner,《州疫苗接种政策:入学要求和豁免》,N AT'LC ONF. OF S TATE L EGISLATURES(2017 年 12 月),https://www.ncsl.org/research/health/state-vaccination-policies-requirements-and-exemptions-for-entering-school.aspx。 5. Leila Barraza、James G. Hodge, Jr.、Chelsea L. Gulinson、Drew Hensley 和 Michelle Castagne,《美国高等教育机构的免疫法律和政策》,47 JL M ED . & E THICS 342, 343–44 (2019)。6. 各州对医院和长期护理机构医护人员的流感疫苗要求,KFF,https://www.kff.org/other/state-indicator/flu-vaccine-requirements-for-health-care-workers-in-hospitals- and-long-term-care-facilities/?currentTimeframe=0&sortModel=%7B%22colId%22:%22Location%22,%22 sort%22:%22asc%22%7D(上次访问时间为 2023 年 1 月 28 日); Abigale L. Ottenberg、Joel T. Wu、Gregory A. Poland、Robert M. Jacobson、Barbara A. Koenig 和 Jon C. Tilburt,《为医护人员接种流感疫苗:强制接种的伦理和法律依据》,101 AM。J. P UB。H EALTH 212,212–15(2011 年)。7. Haley Messenger,《从美国运通到沃尔玛,以下是强制员工接种新冠疫苗的公司》,NBC N EWS,https://www.nbcnews.com/business/business-news/amex-walmart-are-companies-mandating-covid-vaccine-employees-rcna11049(2022 年 1 月 25 日,晚上 7:44)。
我们感谢提供用于构建本文所建立的公共数据库的基础数据的企业合作伙伴:Affinity Solutions(特别是 Atul Chadha 和 Arun Rajagopal)、Lightcast(Anton Libsch 和 Bledi Taska)、CoinOut(Jeff Witten)、Earnin(Arun Natesan 和 Ram Palaniappan)、Homebase(Ray Sandza 和 Andrew Vogeley)、Intuit(Christina Foo 和 Krithika Swaminathan)、Kronos(David Gilbertson)、Paychex(Mike Nichols 和 Shadi Sifain)、Womply(Derek Doel 和 Ryan Thorpe)以及 Zearn(Billy McRae 和 Shalinee Sharma)。我们非常感谢 Nathaniel Hendren,他与我们合作推出了数据库的初始版本,并帮助在 2020 年春季对本文初稿进行了初步分析。我们还要感谢盖茨基金会的 Ryan Rippel 对启动该项目的支持,以及 Gregory Bruich 的早期对话,这些对话帮助激发了这项工作。我们感谢 David Autor、Gabriel Chodorow-Reich、Haley O'Donnell、Emmanuel Farhi、Jason Furman、Steven Hamilton、Erik Hurst、Xavier Jaravel、Lawrence Katz、Fabian Lange、Emmanuel Saez、Ludwig Straub、Danny Yagan 以及众多研讨会参与者的有益评论。这项工作由陈-扎克伯格倡议、比尔和梅琳达盖茨基金会、Overdeck 家族基金会以及 Andrew 和 Melora Balson 资助。该项目已获得哈佛大学 IRB 20-0586 的批准。截至 2023 年 4 月,Opportunity Insights 经济追踪团队的成员包括 Hamidah Alatas、Camille Baker、Harvey Barnhard、Matt Bell、Gregory Bruich、Tina Chelidze、Lucas Chu、Westley Cineus、Sebi Devlin-Foltz、Michael Droste、Dhruv Gaur、Federico Gonzalez、Rayshauna Gray、Abigail Hiller、Matthew Jacob、Tyler Jacobson、Margaret Kallus、Fiona Kastel、Laura Kincaide、Cailtin Kupsc、Sarah LaBauve、Lucía Lamas、Maddie Marino、Kai Matheson、Jared Miller、Christian Mott、Kate Musen、Danny Onorato、Sarah Oppenheimer、Trina Ott、Lynn Overmann、Max Pienkny、Jeremiah Prince、Sebastian Puerta、Daniel Reuter、Peter Ruhm、Tom Rutter、Emanuel Schertz、Shannon Felton Spence、 Krista Stapleford、Kamelia Stavreva、Ceci Steyn、James Stratton、Clare Suter、Elizabeth Thach、Nicolaj Thor、Amanda Wahlers、Kristen Watkins、Alanna Williams、David Williams、Chase Williamson、Shady Yassin、Ruby Zhang 和 Austin Zheng。本文表达的观点均为作者的观点,并不一定反映美国国家经济研究局的观点。
Álvarez -Rendón,J。P.,Salceda,R。和Riesgo -Escovar,J。R.(2018)。果蝇黑色素果蛋白酶作为2型糖尿病的模型。Biomed Research International,2018,1 - 16。https://doi.org/10.1155/2018/1417528美国糖尿病协会。(2013)。糖尿病的诊断和分类。在糖尿病护理中,36(补充1),S67。https://doi.org/ 10.2337/dc13-S067 Anandhan,A.帕金森氏病的代谢功能障碍:生物能力,氧化还原稳态和中央碳代谢。大脑研究公告,133,12 - 30。(2017)。在发展中国家及其相关因素中增加糖尿病患病率。PLOS ONE,12(11),E0187670。https://doi.org/10.1371/journal.pone.0187670 Avazzadeh,S.,Baena,J.M.,Keighron,C.,Feller -Sanchez,Y。,&Quinlan,Y。,&Quinlan,L。R.(2021)。对帕金森氏病进行建模:IPSC,以更好地了解人类病理。脑科学,11(3),373。https://doi.org/10.3390/brainsci11030373 Balestrino,R。,&Schapira,A。H. V.(2020)。帕金森病。欧洲神经病学杂志,27(1),27 - 42。https://doi.org/10.1111/ene.14108 Broughton,S。J.,Piper,M。D. W.,Ikeya,Ikeya,Ikeya,Ikeya,Ikeya,T. L.(2005)。 科学进步,7(24),EABG4336。 https://doi.org/10。欧洲神经病学杂志,27(1),27 - 42。https://doi.org/10.1111/ene.14108 Broughton,S。J.,Piper,M。D. W.,Ikeya,Ikeya,Ikeya,Ikeya,Ikeya,T. L.(2005)。科学进步,7(24),EABG4336。https://doi.org/10。https://doi.org/10。寿命更长,代谢改变以及果蝇中的应激抗性,使细胞的消融产生像配体这样的胰岛素。美国国家科学院的会议记录,102(8),3105 - 3110。https://doi.org/10.1073/pnas.0405775102 Chatterjee,N。,&Perrimon,N。(2021)。是什么燃烧了苍蝇:果蝇中的能量代谢及其在肥胖和糖尿病研究中的应用。1126/sciadv.abg4336 Cheong,J。L. Y.,de Pablo -Fernandez,E。,Foltynie,T。,&Noyce,A。J. J.(2020)。2型糖尿病与Pparkinson氏病之间的关联。帕金森氏病杂志,10(3),775 - 789。https:// doi。org/10.3233/jpd-191900 Chomova,M。(2022)。朝着糖尿病大脑中分子相互作用的解密。生物医学,10(1),115。https://doi.org/10。3390/Biomedicines10010115 Church,F。C.(2021)。帕金森氏病的运动和非运动症状的治疗选择。生物分子,11(4),612。https:// doi.org/10.3390/biom11040612 de Iuliis,A.,Montinaro,E.,Fatati,G.,G.糖尿病和帕金森氏病:胰岛素和多巴胺之间的危险联络。神经再生研究,17(3),523 - 533。https://doi.org/10.4103/1673-5374.320965
David E. Gordon 1,2,3,4 , Gwendolyn M. Jang 1,2,3,4 , Mehdi Bouhaddou 1,2,3,4 , 徐杰伟 1,2,3,4 , Kirsten Obernier 1,2,3,4 , Matthew J. O'Meara 5 , Jeffrey Z.Guo 1,2,3,4 , Danielle L. Swaney 1,2,3,4,蒂亚·图米诺 1,2,6,露丝·休滕海因 1,2,3,4,罗宾·卡克 1,2,3,4,艾丽西亚·理查兹 1,2,3,4,贝里尔·图通库格鲁 1,2,3,4,海伦·福萨德 1,2,3,4,乔蒂·巴特拉1,2,3,4, 凯尔西·哈斯1,2,3,4,玛雅·莫达克 1,2,3,4,明奎·金 1,2,3,4,佩吉·哈斯 1,2,3,4,本杰明·J·波拉科 1,2,3,4,汉内斯·布拉伯格 1,2,3,4,杰奎琳·M·法比尤斯 1,2,3,4,曼农·埃克哈特 1,2,3,4 , Margaret Soucheray 1,2,3,4 , Melanie J. Bennett 1,2,3,4 , Merve Cakir 1,2,3,4 , Michael J. McGregor 1,2,3,4 , 李琼玉 1,2,3,4 , Zun Zar Chi Naing 1,2,3,4 , 周远 1,2,3,4 , 彭世明1,2,6, 伊尔莎·T. Kirby 1,4,7 , James E. Melnyk 1,4,7 , John S. Chorba 1,4,7 , Kevin Lou 1,4,7 , 戴世忠 1,4,7 , 沉文琪 1,4,7 , 石英 1,4,7 , 张紫阳 1,4,7 , Inigo Barrio-Hernandez 8 , 丹麦 Memon 8 , 克劳迪娅Hernandez-Armenta 8 、Christopher JP Mathy 1,9,10,2 、Tina Perica 1,2,9 、Kala B. Pilla 1,2,9 、Sai J. Ganesan 1,2,9 、Daniel J. Saltzberg 1,2,9 、Rakesh Ramachandran 1,2,9 、习刘 1,2,6 、Sara B. Rosenthal 11 , 洛伦佐·卡尔维罗 12 , Srivats Venkataramanan 12 , Jose Liboy- Lugo 12 , Yizhu Lin 12 , Stephanie A. Wankowicz 1,13,9 , Markus Bohn 6 , Phillip P. Sharp 1,2,4 , Raphael Trenker 14 , Janet M. Young 15 , Devin A. Cavero ,3 , Joseph Hiatt 16,3 , Theodore L. Roth 16,3 , Ujjwal Rathore 3 , Advait Subramanian 1,17 , Julia Noack 1,17 , Mathieu Hubert 18 , Ferdinand Roesch 19 , Thomas Vallet 19 , Björn Meyer 19 , Kris M. White 20 , Lisa Miorin 20 , Oren S. Rosenberg 21,22,23 ,克莱门特·维巴 1,2,6 , 大卫·阿加德 1,24 , 梅兰妮·奥特 3,21 , 迈克尔·埃默曼 25 , 大卫·鲁杰罗 26,27,4 , 阿道夫·加西亚-萨斯特雷 20 , 娜塔莉亚·朱拉 1,14,4 , 马克·冯·扎斯特罗 1,1,4,28 , 杰克·汤顿1,2,4,奥利维尔·施瓦茨 18,马可·维格努齐 19,克里斯托夫·丹弗特 29,沙埃里·慕克吉 1,17,马特·雅各布森 6,哈米特·S·马利克 15,丹尼卡·G·藤森 1,4,6,特雷·伊德克尔 30,查尔斯·S·克雷克 6,27,斯蒂芬·弗罗尔12,27 , 詹姆斯·弗雷泽 1,2,9 , John Gross 1,2,6 , Andrej Sali 1,2,6,9 , Tanja Kortemme 1,9,10,2 , Pedro Beltrao 8 , Kevan Shokat 1,4,7 , Brian K. Shoichet 1,2,6 , Nevan J. Krogan 1,2,3,4 1 QBI COVID-19 研究小组 (QCRG),旧金山,美国加利福尼亚州,94158
虽然芳香化酶抑制剂(AI)可以对无病寿命产生积极影响,但由于副作用,例如关节疼痛,僵硬,腹痛和肌痛,它们的使用可能受到限制[1-3]。几乎50%接受AI经历的患者,特别是作为AI诱导的肌肉骨骼综合征(AI-MSS)的一部分[4]。与AI-MS相关的最常见的肌肉骨骼不良事件是骨质流失和关节痛,这主要是由雌激素缺乏引起的[5]。AI诱导的亚属背后的机制已通过多种方式定义[6]。是,降低的雌激素水平会增加关节软骨细胞中促炎性细胞因子,例如IL-6和IL-1,从而导致关节疼痛和肿胀[7]。另一种机制是芳香酶和雌激素受体在大脑和脊髓分析系统中表达。这有助于大大减少疼痛阈值。这有助于降低疼痛阈值[8]。此外,MRI发现揭示了AI-MSS的病理生理学,这与替索诺氏症的变化有关,例如肾上腺素液的积累和皮下组织中的水肿,可能导致患者接受AI的患者疼痛[9,10]。此外,接受AI的患者会经历副作用,例如认知功能障碍[11],焦虑和抑郁[12],睡眠问题和疲劳[13]。所有这些不良事件都会严重影响患者的生活质量(QOL),这是停止治疗的原因。直接放松练习以减少AI副作用的非利用可以将其视为差距。因此,通过减少AI的不良事件来调节乳腺癌患者的生活质量至关重要[14,15]。除了药理方法外,还要减少AI副作用的其他干预措施包括针灸,营养补充,放松技术和体育锻炼。进行了干预措施,以减轻AI对乳腺癌患者(BC)的副作用的一种手段。这些干预措施包括步行,水上运动,力量训练,卧推,腿部,坐着行等[6,16]。有氧运动,电阻或组合运动通常用于改善接受AI治疗的卑诗省患者的生活质量[17,18]。这些运动干预措施大多可有效减轻疼痛和僵硬,改善肌肉力量,生活质量和疼痛阈值[16]。只有两项研究,一项涉及瑜伽和另一项泰式智智,研究了放松技术对AI相关的关节痛的有效性[19]。但是,关于松弛技术对乳腺癌患者治疗相关副作用的影响的证据不足。雅各布森在1938年首先描述了进行性肌肉放松运动(前)[20]。pre是一种用于放松整个身体的各种研究中的技术。它通过最大程度的违反和放松不同肌肉群而起作用,有时伴随着深呼吸[20,21]。PRE是一种广泛使用的方法,具有许多用于各种健康状况的当前修改[22,23]。生理,感知和行为阳性的阳性阳性发现得到了很好的定义[21]。PRE在乳腺癌患者中有效,可改善上肢功能并减少焦虑,并降低化学疗法的严重程度
1. N. Jacobson,例外李代数 2. L. ,,.f, Lindahl 和 F. Poulsen,调和分析中的薄集 3. I. Satake,半单代数群的分类理论 4. F. Hirzebruch、WD Newmann 和 SS Koh,可微流形和二次型(已绝版) 5. I. Chavel,一秩黎曼对称空间(已绝版) 6. R B. Burckel,C(X) 在其子代数中的特征 7. BR McDonald、AR Magid 和 KC Smith,环理论:俄克拉荷马会议论文集 8. Y.-T. Siu,分析对象的扩展技术 9. SR Caradus、WE Pfaffenberger 和 B. Yood,Calkin 代数和 Banach 空间上的算子代数 10. E. 0. Roxin,P.-T. Liu 和 RL Sternberg,《微分博弈与控制理论》11. M Orzech 和 C. Small,《交换环的 Brauer 群》12. S. Thomeier,《拓扑及其应用》13. J. M Lopez 和 KA Ross,《Sidon 集》14. WW Comfort 和 S. Negrepontis,《连续伪度量》15. K. McKennon 和 JM Robertson,《局部凸空间》16. M Carmeli 和 S. Malin,《旋转和洛伦兹群的表示:导论 1》7. GB Seligman,《李代数中的合理方法》18. DG de Figueiredo,《泛函分析:巴西数学学会研讨会论文集》19. L. Cesari、R. Kannan 和 JD Schuur,《非线性泛函分析和微分方程:密歇根州立大学会议论文集》20, JJ Schaffer,赋范空间中的球面几何 21. K. Yano 和 M Kon,反不变子流形 22. WV Vasconcelos,二维环 23. RE Chandler,豪斯多夫紧化 24. SP Franklin 和 BVS Thomas,拓扑学:孟菲斯州立大学会议论文集 25. SK Jain,环理论:俄亥俄大学会议论文集 26. BR McDonald 和 RA Mo"is,环理论 II:第二届俄克拉荷马会议论文集 27. RB Mura 和 A. Rhemtulla,可排序群 28. JR Graef,动力系统的稳定性:理论与应用 29. H.-C. Wang,齐次分支代数 30. E. 0. Roxin,P.-T. Liu 和 RL Sternberg,《微分博弈与控制理论 II》31. RD Porter,《纤维丛导论》32. M Altman,《承包商和承包商方向理论与应用》33. JS Golan,《模块类别中的分解和维度》34. G. Fairweather,《微分方程的有限元 Galerkin 方法》35. JD Sally,《局部环中理想的生成元数目》36. SS Miller,《复分析:纽约州立大学布罗克波特分校会议论文集》37. R. Gordon,《代数的表示理论:费城会议论文集》38. M Goto 和 FD Grosshans,《半单李代数》39. AI A"uda,NCA da Costa 和 R. Chuaqui,《数理逻辑:第一届巴西会议论文集》
David E. Gordon 1,2,3,4,35 , Gwendolyn M. Jang 1,2,3,4,35 , Mehdi Bouhaddou 1,2,3,4,35 , Jiewei Xu 1,2,3,4,35 , Kirsten Obernier 1,2,3,4,3 , M. White , Matthew J. , 575 35 , Veronica V. Rezelj 8,35 , Jeffrey Z. Guo 1,2,3,4 , Danielle L. Swaney 1,2,3,4 , Tia A. Tummino 1,2,9 , Ruth Huettenhain 1,2,3,4 , Robyn M. Kaake 1,2, 4 , Alice , Berils , 12 , L. 1,2,3,4 , Helene Foussard 1,2,3,4 , Jyoti Batra 1,2,3,4 , Kelsey Haas 1,2,3,4 , Maya Modak 1,2,3,4 , Minkyu Kim 1,2,3,4 , Paige Haas 1,2,3,4 , Benjamin , 21 , 21 , 24 , Pollaccoberg . ,3,4 , Jacqueline M. Fabius 1,2,3,4 , Manon Eckhardt 1,2,3,4 , Margaret Soucheray 1,2,3,4 , Melanie J. Bennett 1,2,3,4 , Merve Cakir 1,2,3,4 , Michael J. McGregyu , 1,23, 4 , Lijo , Lijo n Meyer 8 , Ferdinand Roesch 8 , Thomas Vallet 8 , Alice Mac Kain 8 , Lisa Miorin 5,6 , Elena Moreno 5,6 , Zun Zar Chi Naing 1,2,3,4 , Yuan Zhou 1,2,3,4 , Shiming Peng 1,2,9 , Ying , 2 , 14 , 14 , Shihang , Zhang , Wenqi Shen 1,2,4,11 , Ilsa T. Kirby 1,2,4,11 , James E. Melnyk 1,2,4,11 , John S. Chorba 1,2,4,11 , Kevin Lou 1,2,4,11 , Shizhong A. Dai 1,2,4 , Danish Herbert 11 , 22 , Claudia Hernandez-Armenta 12 , Jiankun Lyu 1,2,9 , Christopher JP Mathy 1,2,13,14 , Tina Perica 1,2,13 , Kala B. Pilla 1,2,13 , Sai J. Ganesan 1,2,13 , Daniel J. Saltzberg 12 , 12 , 13 , Rakeshrand , 13 . Xi Liu 1,2,9 , Sara B. Rosenthal 15 , Lorenzo Calviello 1,16 , Srivats Venkataramanan 1,16 , Jose Liboy-Lugo 1,16 , Yizhu Lin 1,16 , Xi-Ping Huang 17 , YongFeng Liu 17 , Stephanie Mark 1 , 18 , Wan Boko 18 . hn 1,2,9 , Maliheh Safari 1,2,19 , Fatima S. Ugur 1,2,4,9 , Cassandra Koh 8 , Nastaran Sadat Savar 8 , Quang Dinh Tran 8 , Djoshkun Shengjuler 8 , Sabrina J Fletcher 8 , Michael C . 0 , David J. Broadhurst 20 , Saker Klippsten 20 , Phillip P. Sharp 4 , Nicole A. Wenzell 1,2,4 , Duygu Kuzuoglu 1,2,4,21,22 , Hao-Yuan Wang 1,2,4 , Raphael Trenker , 12 , Jan A. Caver , 24 3,26 , Joseph Hiatt 3,25,26 , Theodore L. Roth 3,25,26 , Ujjwal Rathore 3,26 , Advait Subramanian 1,2,26 , Julia Noack 1,2,26 , Mathieu Hubert 10 , Robert M. Stroud , Alan Oel , 19 , 19 , 19 . by S. Rosenberg 1,2,19,27 , Kliment A Verba 1,2,9 , David A. Agard 1,2,3,19 , Melanie Ott 1,2,3,27 , Michael Emerman 28 , Natalia Jura 1,2,4,23 , Mark von Zastrow 1,2,4, 29 , Alan Verba , 13 , 13 ,21 , Olivier Schwartz 10 , Christophe d'Enfert 31 , Shaeri Mukherjee 1,2,26 , Matt Jacobson 1,2,9 , Harmit S. Malik 24 , Danica G. Fujimori 1,2,4,9 , Trey Ideker 1,32 , Charles N. 12 , 12 , F. 6,21 , James S. Fraser 1,2,13 , John D. Gross 1,2,9 , Andrej Sali 1,2,9,13 , Bryan L. Roth 17 , Davide Ruggero 1,2,4,21,22 , Jack Taunton 1,2,4 , Tanja , 12 , 12 , Bel , Bel , Marco , 13 gnuzzi 8 ✉ , Adolfo García-Sastre 5,6,33,34 ✉ , Kevan M. Shokat 1,2,4,11 ✉ , Brian K.Shoichet 1,2,9 ✉ & Nevan J. Krogan 1,2,3,4,5 ✉
1。al-Zeyara,S.A.,B。Jarvis和B.M.Mackey。2011。天然菌群对食物的抑制作用对富集肉汤中李斯特氏菌生长的生长。int。J.食物微生物。145:98 115。2。Andrews,W.H.,H。Wang,A。Jacobson和T. Hammack,细菌分析手册,第5章。 沙门氏菌。 2017。 3。 Bailey,J.S。 和N.A. Cox。 1992。 普遍的普遍肉汤,用于同时检测食品中沙门氏菌和李斯特菌。 J. 食物蛋白质。 55:256-259。 4。 Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Andrews,W.H.,H。Wang,A。Jacobson和T. Hammack,细菌分析手册,第5章。沙门氏菌。 2017。 3。 Bailey,J.S。 和N.A. Cox。 1992。 普遍的普遍肉汤,用于同时检测食品中沙门氏菌和李斯特菌。 J. 食物蛋白质。 55:256-259。 4。 Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。沙门氏菌。2017。3。Bailey,J.S。 和N.A. Cox。 1992。 普遍的普遍肉汤,用于同时检测食品中沙门氏菌和李斯特菌。 J. 食物蛋白质。 55:256-259。 4。 Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Bailey,J.S。和N.A.Cox。 1992。 普遍的普遍肉汤,用于同时检测食品中沙门氏菌和李斯特菌。 J. 食物蛋白质。 55:256-259。 4。 Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Cox。1992。普遍的普遍肉汤,用于同时检测食品中沙门氏菌和李斯特菌。J.食物蛋白质。55:256-259。 4。 Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。55:256-259。4。Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Baranyi,J。和T.A.罗伯茨。1994。一种动态方法来预测食物中细菌的生长。int。J.食物微生物。23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。23:277-294。5。Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L.tortorello。2009。样本准备:被遗忘的开始。J.食物蛋白质。72:1774-1789。6。Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。2012。多路复用PCR的开发和评估,用于同时检测五种食源性病原体。J. Appl。微生物。112:823-830。7。Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Chen,J。,J。Tang,A.K。Bhunia,C。Tang,C。Wang和S. Hui。2015。开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。J. Gen. Appl。 微生物。 61:224-231。 8。 Cheng,C.M。,K。Van,W。Lin和R.M. 红宝石。 2009。 实时PCR 24小时快速方法检测食品中沙门氏菌的实时验证。 J. 食物蛋白质。 72:945-951。 9。 Cheng,C.M.,W。Lin,K.T。 van,L。phan,n.n。 tran和D. Farmer。 2008。 使用实时PCR快速检测食品中沙门氏菌。 J. 食物蛋白质。 71:2436-2441。 10。 国内和进口产品分配2014财年DFP&G#14-05/14-06。 “在木瓜方法中检测沙门氏菌的样品制备” pg。 50。http://inside.fda.gov:9003/downloads/programsinitiatives/food/fieldprograms/ucm400671.pdf11。 Doran,T。Hanes,D.,Weagent,S.,Torosian,S.,Burr,D.,Yoshitomi,K.,Jinneman,K.,Penev,R.,Adeyemo,O.,Williams-Hill,D。和P. Morin。 2013。 蕨类植物念珠筛查方法。 Fern-Mic.0004.02。 12。 冯,P.,S.D。 Weagant和K. Jinneman,细菌学分析手册,第4A章。 腹泻大肠杆菌。 2017。 13。 Gasanov,U.,D。Hughes和P.M.汉斯布罗。 2005。 剖析和鉴定李斯特氏菌和单核细胞增生李斯特菌的方法:综述。 fems微生物。 修订版 29:851–875。 14。 Gehring,A.G.,D.M。 Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。J. Gen. Appl。微生物。61:224-231。8。Cheng,C.M。,K。Van,W。Lin和R.M. 红宝石。 2009。 实时PCR 24小时快速方法检测食品中沙门氏菌的实时验证。 J. 食物蛋白质。 72:945-951。 9。 Cheng,C.M.,W。Lin,K.T。 van,L。phan,n.n。 tran和D. Farmer。 2008。 使用实时PCR快速检测食品中沙门氏菌。 J. 食物蛋白质。 71:2436-2441。 10。 国内和进口产品分配2014财年DFP&G#14-05/14-06。 “在木瓜方法中检测沙门氏菌的样品制备” pg。 50。http://inside.fda.gov:9003/downloads/programsinitiatives/food/fieldprograms/ucm400671.pdf11。 Doran,T。Hanes,D.,Weagent,S.,Torosian,S.,Burr,D.,Yoshitomi,K.,Jinneman,K.,Penev,R.,Adeyemo,O.,Williams-Hill,D。和P. Morin。 2013。 蕨类植物念珠筛查方法。 Fern-Mic.0004.02。 12。 冯,P.,S.D。 Weagant和K. Jinneman,细菌学分析手册,第4A章。 腹泻大肠杆菌。 2017。 13。 Gasanov,U.,D。Hughes和P.M.汉斯布罗。 2005。 剖析和鉴定李斯特氏菌和单核细胞增生李斯特菌的方法:综述。 fems微生物。 修订版 29:851–875。 14。 Gehring,A.G.,D.M。 Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。Cheng,C.M。,K。Van,W。Lin和R.M.红宝石。2009。实时PCR 24小时快速方法检测食品中沙门氏菌的实时验证。J.食物蛋白质。72:945-951。9。Cheng,C.M.,W。Lin,K.T。 van,L。phan,n.n。 tran和D. Farmer。 2008。 使用实时PCR快速检测食品中沙门氏菌。 J. 食物蛋白质。 71:2436-2441。 10。 国内和进口产品分配2014财年DFP&G#14-05/14-06。 “在木瓜方法中检测沙门氏菌的样品制备” pg。 50。http://inside.fda.gov:9003/downloads/programsinitiatives/food/fieldprograms/ucm400671.pdf11。 Doran,T。Hanes,D.,Weagent,S.,Torosian,S.,Burr,D.,Yoshitomi,K.,Jinneman,K.,Penev,R.,Adeyemo,O.,Williams-Hill,D。和P. Morin。 2013。 蕨类植物念珠筛查方法。 Fern-Mic.0004.02。 12。 冯,P.,S.D。 Weagant和K. Jinneman,细菌学分析手册,第4A章。 腹泻大肠杆菌。 2017。 13。 Gasanov,U.,D。Hughes和P.M.汉斯布罗。 2005。 剖析和鉴定李斯特氏菌和单核细胞增生李斯特菌的方法:综述。 fems微生物。 修订版 29:851–875。 14。 Gehring,A.G.,D.M。 Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。Cheng,C.M.,W。Lin,K.T。van,L。phan,n.n。tran和D. Farmer。2008。使用实时PCR快速检测食品中沙门氏菌。J.食物蛋白质。71:2436-2441。10。国内和进口产品分配2014财年DFP&G#14-05/14-06。“在木瓜方法中检测沙门氏菌的样品制备” pg。50。http://inside.fda.gov:9003/downloads/programsinitiatives/food/fieldprograms/ucm400671.pdf11。Doran,T。Hanes,D.,Weagent,S.,Torosian,S.,Burr,D.,Yoshitomi,K.,Jinneman,K.,Penev,R.,Adeyemo,O.,Williams-Hill,D。和P. Morin。2013。蕨类植物念珠筛查方法。Fern-Mic.0004.02。12。冯,P.,S.D。Weagant和K. Jinneman,细菌学分析手册,第4A章。腹泻大肠杆菌。2017。13。Gasanov,U.,D。Hughes和P.M.汉斯布罗。 2005。 剖析和鉴定李斯特氏菌和单核细胞增生李斯特菌的方法:综述。 fems微生物。 修订版 29:851–875。 14。 Gehring,A.G.,D.M。 Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。Gasanov,U.,D。Hughes和P.M.汉斯布罗。2005。剖析和鉴定李斯特氏菌和单核细胞增生李斯特菌的方法:综述。fems微生物。修订版29:851–875。14。Gehring,A.G.,D.M。 Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。Gehring,A.G.,D.M。Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。Albin,又名Bhunia,H。Kim,S.A。Reed和S. Tu。Bhunia,H。Kim,S.A。Reed和S. Tu。2012。大肠杆菌O157:H7,单核细胞增生李斯特菌,肠道沙门氏菌和小肠结肠炎的混合培养物富集。食物控制。26:269-273。15。Hitchins,A.D。,K。Jinneman和Y. Chen,细菌学分析手册,第10章。单核细胞增生李斯特菌的检测和枚举。2017。16。Jasson,V.,A。Rajkovic,J。Debevere和M. Uyttendaele。 2009。 单核细胞增生李斯特菌的复苏和生长的动力学作为选择适当的富集条件作为快速检测方法的先前步骤的工具。 食物微生物。 26:88-93。 17。 Kanki,M.,K。Seto,J。Sakata,T。Harada和Y. Kumeda。 2009。 使用普遍的preenrichment肉汤在食物样品中同时富集了产生大肠杆菌O157和O26的大肠杆菌O157和O26和沙门氏菌的富集。 J. 食物蛋白质。 72:2065-2070。Jasson,V.,A。Rajkovic,J。Debevere和M. Uyttendaele。2009。单核细胞增生李斯特菌的复苏和生长的动力学作为选择适当的富集条件作为快速检测方法的先前步骤的工具。食物微生物。26:88-93。17。Kanki,M.,K。Seto,J。Sakata,T。Harada和Y. Kumeda。2009。使用普遍的preenrichment肉汤在食物样品中同时富集了产生大肠杆菌O157和O26的大肠杆菌O157和O26和沙门氏菌的富集。J.食物蛋白质。72:2065-2070。
基因治疗和递送论文在IVIS上成像1。Agrawal VK,Copeland KM,Barbachano Y,Rahim A,Seth R,White CL,Hingorani M,Nutting CM,Kelly M,Harris P,Pandha H,Melcher AA,Melcher AA,Vile RG,Porter RG,Porter C,Porter C,Harrington KJ。微血管无组织转移用于基因输送:体内评估质粒和腺病毒递送的不同途径。基因治疗。2009年1月; 16(1):78-92。2。ahmed N,Ratnayake M,Savoldo B,Perlaky L,Dotti G,Wels WS,Bhattacharjee MB,Gilbertson RJ,Shine HD,Weiss HL,Rooney CM,Heslop He,Gottschalk S.经过实验性Medulloblastoma的恢复后,HESSCHALK S.经过实验性髓鞘瘤的转移后,具有超含Her2-sperific T细胞的转移。癌症。2007年6月15日; 67(12):5957-5964。3。Ahmed N,Salsman VS,Kew Y,Shaffer D,Powell S,Zhang YJ,Grossman RG,Heslop HE,GottschalkS。Her2特异性T细胞靶向原发性胶质母细胞瘤干细胞并诱导自体实验肿瘤的消退。Clin Cancer Res。 2010年1月15日; 16(2):474-485。 4。 Ahmed N,Salsman vs,Yvon E,Louis Cu,Perlaky L,Wels WS,Dishop MK,Kleinerman EE,Pule M,Pule M,Rooney CM,Heslop HE,GottschalkS。 mol ther。 2009年10月; 17(10):1779-1787。 5。 Akimoto T,Sorg BS,Yan Z.过氧化物酶体增殖物激活的受体 - 伽马共激活剂-1alpha启动子在活小鼠的骨骼肌中的实时成像。 美国生理学杂志,细胞生理学。 2004年9月; 287(3):C790-796。 6。 超声Med Biol。 7。Clin Cancer Res。2010年1月15日; 16(2):474-485。4。Ahmed N,Salsman vs,Yvon E,Louis Cu,Perlaky L,Wels WS,Dishop MK,Kleinerman EE,Pule M,Pule M,Rooney CM,Heslop HE,GottschalkS。 mol ther。 2009年10月; 17(10):1779-1787。 5。 Akimoto T,Sorg BS,Yan Z.过氧化物酶体增殖物激活的受体 - 伽马共激活剂-1alpha启动子在活小鼠的骨骼肌中的实时成像。 美国生理学杂志,细胞生理学。 2004年9月; 287(3):C790-796。 6。 超声Med Biol。 7。Ahmed N,Salsman vs,Yvon E,Louis Cu,Perlaky L,Wels WS,Dishop MK,Kleinerman EE,Pule M,Pule M,Rooney CM,Heslop HE,GottschalkS。mol ther。2009年10月; 17(10):1779-1787。5。Akimoto T,Sorg BS,Yan Z.过氧化物酶体增殖物激活的受体 - 伽马共激活剂-1alpha启动子在活小鼠的骨骼肌中的实时成像。美国生理学杂志,细胞生理学。2004年9月; 287(3):C790-796。6。超声Med Biol。7。Alter J,Sennoga CA,Lopes DM,Eckersley RJ,Wells DJ。微泡稳定性是体内基因转移中介导的超声和微泡效率的主要决定因素。2009年6月; 35(6):976-984。AOI A,Watanabe Y,Mori S,Takahashi M,Vassaux G,Kodama T.使用纳米/微泡和超声波和超声波疱疹疱疹单纯胸腺胸腺胺激酶介导的自杀基因治疗。超声Med Biol。2007年12月18日。8。Arenas F,Hervias I,Uriz M,Joplin R,Prieto J,Medina JF。 ursexyoxycholic和糖皮质激素的组合上调了人肝细胞中AE2替代启动子。 J Clin Invest。 2008年2月; 118(2):695-709。 9。 Asokan A,Johnson JS,Li C,Samulski RJ。 生物发光的病毒粒子壳:定量细胞和活体动物中AAV载体动力学的新工具。 基因治疗。 2008年12月; 15(24):1618-1622。 10。 aung W,Hasegawa S,Koshikawa-Yano M,Obata T,Ikehira H,Furukawa T,Aoki I,Aoki I,SagaT。通过光学和磁共振成像的实验性肿瘤中体内电穿孔介导的转基因表达的可视化。 基因治疗。 2009年7月; 16(7):830-839。 11。 Aung W,Hasegawa S,Koshikawa-Yano M,Tsuji AB,Sogawa C,Sudo H,Sugyo H,Sugyo A,Koizumi M,Furukawa T,SagaT。与Fdg-Pets tumor模型中的可调节性转移基因的表达和评估。 基因治疗。 2010年5月6日。 12。 mol ther。 2009年6月; 17(6):1003-1011。 13。 mol ther。 14。Arenas F,Hervias I,Uriz M,Joplin R,Prieto J,Medina JF。ursexyoxycholic和糖皮质激素的组合上调了人肝细胞中AE2替代启动子。J Clin Invest。2008年2月; 118(2):695-709。9。Asokan A,Johnson JS,Li C,Samulski RJ。生物发光的病毒粒子壳:定量细胞和活体动物中AAV载体动力学的新工具。基因治疗。2008年12月; 15(24):1618-1622。10。aung W,Hasegawa S,Koshikawa-Yano M,Obata T,Ikehira H,Furukawa T,Aoki I,Aoki I,SagaT。通过光学和磁共振成像的实验性肿瘤中体内电穿孔介导的转基因表达的可视化。基因治疗。2009年7月; 16(7):830-839。 11。 Aung W,Hasegawa S,Koshikawa-Yano M,Tsuji AB,Sogawa C,Sudo H,Sugyo H,Sugyo A,Koizumi M,Furukawa T,SagaT。与Fdg-Pets tumor模型中的可调节性转移基因的表达和评估。 基因治疗。 2010年5月6日。 12。 mol ther。 2009年6月; 17(6):1003-1011。 13。 mol ther。 14。2009年7月; 16(7):830-839。11。Aung W,Hasegawa S,Koshikawa-Yano M,Tsuji AB,Sogawa C,Sudo H,Sugyo H,Sugyo A,Koizumi M,Furukawa T,SagaT。与Fdg-Pets tumor模型中的可调节性转移基因的表达和评估。 基因治疗。 2010年5月6日。 12。 mol ther。 2009年6月; 17(6):1003-1011。 13。 mol ther。 14。Aung W,Hasegawa S,Koshikawa-Yano M,Tsuji AB,Sogawa C,Sudo H,Sugyo H,Sugyo A,Koizumi M,Furukawa T,SagaT。与Fdg-Pets tumor模型中的可调节性转移基因的表达和评估。基因治疗。2010年5月6日。12。mol ther。2009年6月; 17(6):1003-1011。13。mol ther。14。Balani P,Boulaire J,Zhao Y,Zeng J,Lin J,WangS。高迁移率组Box2启动子控制的自杀基因表达能够靶向胶质母细胞瘤治疗。Barth AS,Kizana E,Smith RR,Terrovitis J,Dong P,Leppo MK,Zhang Y,Miake J,Olson EN,Schneider JW,Abraham MR,Marban E.带有NA+ CA2+ CA2+ CA2+ CAC2+ CACC2+ CACC2+ CACA2+ CACA2+ CAPIER RECTIER RECTIER CARDICENIC NACSIENIC NICENIC NACCONIC NICEAGIC DEACKICONIC NACELIC NIDEMIAN CARMIDIC NACELIC SACTIIC SACELIC NIDEMIAN IDIAGION的病毒载体。2008年5月; 16(5):957-964。Basile P,Dadali T,Jacobson J,Hasslund S,Ulrich-Vinther M,Soballe K,Nishio Y,Drissi MH,Langstein HN,Mitten DJ,O'Keefe RJ,Schwarz EM,Awad HA。冻干肌腱同种异体移植作为GDF5基因递送的组织工程支架。mol ther。2008年3月; 16(3):466-473。15。Bayer M,Kantor B,Cockrell A,Ma H,Zeithaml B,Li X,McCown T,KafriT。大型U3缺失导致非整合慢病毒载体的体内表达增加。mol ther。2008年12月; 16(12):1968-1976。16。Bell JB,Aronovich EL,Schreifels JM,Beadnell TC,Hackett PB。 的持续时间Bell JB,Aronovich EL,Schreifels JM,Beadnell TC,Hackett PB。
Term 15 Beach Street, Port Chalmers Dunedin 1019 current NZ Seedlab 60 Ryans Road, Harewood Christchurch 1035 current Orana Wildlife Park McLeans Island Road, Harewood Christchurch 1039 current Tegel Foods - AKL Analytical Lab 1/ 100 Hugo Johnston Drive, Penrose Auckland 1071 current Air New Zealand Limited AKL Cargo Buildings 1 and 4 Ogilvie Crescent, Auckland Airport Auckland 1102 current Delarente Corporation Limited 41 Hautonga Street, Petone Lower Hutt 1103 current Masterpet Corporation Limited 143 Hutt Park Road, Gracefield Lower Hutt 1108 current Airwork NZ Ltd 487 Airfield Road, Ardmore Auckland 1125 current Crown Worldwide (NZ) Limited 141 Newton Street, Mount Maunganui Tauranga 1127 current Nippon Express (New Zealand) Limited 37 Andrew Baxter Drive, Airport Oaks Auckland 1129 current Port of Tauranga - Sulphur Point Sulphur Point Wharf, Sulphur Point Tauranga 1177 current Napier Port - Container Terminal 818 Breakwater Road, Ahuriri Napier 1180 current Port of Auckland Decontamination Facilit Cnr French and Tooley Street, Port of Auckland Auckland 1196 current RNZAF Base Whenuapai (Transfer Station) 15 RNZAF Base Auckland Takitimu Street, Whenuapai Auckland 1253 current Sims Pacific Metals Limited 263 James Fletcher Drive, Otahuhu Auckland 1258 current Transworld International Removals Limite 407 Cuba Street, Alicetown Lower Hutt 1268 current Otago University Leith Street, North Dunedin Dunedin 1295 current Otago University - Anthropology Richardson Building GC.15a Castle Street, Castle Street Dunedin 1336 current Toyota NZ Ltd - PMR 29 Roberts Line, Kelvin Grove Palmerston North 1350 current Centreport Limited 2 Fryatt Quay, Pipitea Wellington 1362 current Level Limited 71 King Street, Frankton Hamilton