凭借其无与伦比的速度,低潜伏期和广泛的设备连接的承诺,5G无线技术的引入代表了电信开发的关键转折点。本研究研究了5G将如何显着影响云计算和物联网(IoT),两个重要的技术领域。5G通过促进最终用户设备和云服务器之间的更快,更可靠的连接来促进云计算领域的范式变化。高数据传输速率和低延迟可实现实时服务交付和处理,为诸如边缘计算,虚拟现实和增强现实等资源密集型应用程序创造了新的机会。5G与云计算的集成有可能改变基于云的服务的体系结构和功能,从而增强其响应能力和活力。此外,通过与物联网的5G合并,预示了一个新的自动化和沟通时代。5G扩大的网络容量可以容纳大量的物联网设备,这有助于他们之间的平稳沟通和协调。通过启用从未见过速度和可靠性的物联网应用程序,这种协同作用为包括工业自动化,智慧城市,医疗保健和农业等行业开辟了新的机会。5G和IoT的收敛性不仅加快了IoT解决方案的实施,而且还可以扩大其效率和可扩展性。,但在5G的革命承诺方面存在障碍。随着越来越多的设备连接并交换了数据,安全性和隐私问题变得至关重要。此外,还需要大量的财务支出和仔细的计划来满足推出5G的基础设施需求。在本文中对5G,云计算和物联网之间的共生联系进行了详尽的研究。它试图为技术环境的知识做出贡献,并指导未来的研发活动,以便通过分析这种融合所带来的可能性和困难来充分实现5G支持创新的希望。
在人工智能中的图像处理和技术方面的进步使计算机可以看到和学习。本文介绍了一项技术,该技术已利用Mobilenetv2深卷积神经网络体系结构来自动识别和诊断图像中的植物疾病。植物疾病的识别和分类现在仅由人类专家 - 杂种延伸代理人和农民,昂贵的劳动力,容易犯错。这项研究依靠数据集收集作为分类和识别植物疾病的技术。这是一个多步骤过程,涉及有关原始集合的预处理数据,叶片的面罩绿色区域,删除绿色部分,转换为灰度,然后获得一些特征,选择并在疾病管理方面进行分类。考虑了两种不同类型的植物,即玉米和马铃薯,以显示拟议模型结果的有效性。混淆矩阵和分类性能报告用于评估系统。土豆和玉米的数据集分别包括6228和6878张叶子的图像。精确,召回和F1得分分别记录为95.15%,94.76%和94.93%,分别记录为马铃薯和玉米数据集的累积性能。这转化为在为这些农作物挑选大多数疾病的抵抗力,使其成为可以在农业疾病检测中信心使用的资源。Mobilenetv2模型在两种农作物中都表现良好,尤其是对于马铃薯早期的疫病和玉米共同生锈。在识别健康的马铃薯叶子方面的性能较低表明,健康和患病的叶子的特征空间可能会重叠。Mobilenetv2模型通常在检测大多数影响马铃薯叶和玉米叶子的疾病时具有强大的能力,但是需要将某些特定区域作为目标以进一步增强。
抽象目标的伞审查提供了对有效提供常规免疫性结果的干预措施(L&MICS)的常规免疫性结果。设计系统评价的系统评价或雨伞审查。数据来源我们全面搜索了11个学术数据库和23个灰色文献来源。从2020年5月5日进行的有关L&MICS常规儿童免疫部门的证据差距图中采用了搜索。我们于2021年10月更新了搜索。资格标准,我们纳入了系统的审查,以评估L&MICS常规儿童免疫结果的任何干预措施的有效性。数据提取和合成搜索结果由两名审稿人独立应用预定义的包含和排除标准筛选。数据由两名研究人员独立提取。用于审查证据清单的专业单位用于评估审查质量。混合方法合成的侧重于荟萃分析和叙事元素,以适应所包括的评论中可用的定量和定性信息。结果62在本伞审查中包括系统评价。我们发现面向护理人员的干预措施具有很大的积极和统计学意义的影响,尤其是那些专注于短期敏感和教育运动以及给护理人员的书面信息的干预措施。对于此类别下的所有其他干预措施,证据要么有限或不可用。存在很大的证据差距,需要解决。针对卫生系统的干预措施,证据基础很薄,源自叙事综合表明对家庭访问的积极影响,对付费的表现方案的影响以及对向非政府提供者提供服务的不确定效果。对于以社区为导向的干预措施,最近的一项高质量混合方法评论提出了积极但很小的影响。总体而言,证据基础在范围,干预类型和结果方面是高度异质的。针对护理人员和社区的结论干预措施有效地改善了常规的儿童免疫结果。以卫生系统为导向的干预措施的证据基础很少让我们得出确定的结论,除了家庭访问。
抽象设计机器人代理执行开放词汇任务一直是机器人技术和AI的长期目标。最近,大型语言模型(LLM)在创建用于执行开放词汇任务的机器人代理方面取得了令人印象深刻的结果。但是,在不确定性的存在下为这些任务进行规划是具有挑战性的,因为它需要“经过思考链”推理,从环境中汇总信息,更新状态估计以及基于更新的状态估计来生成操作。在本文中,我们提出了一种使用LLM的部分可观察到的任务的交互式计划技术。在拟议的方法中,LLM用于使用机器人从环境中收集丢失的信息,并从收集的观测值中推断出基本问题的状态,同时指导机器人执行所需的操作。我们还通过自我教学使用了精致的Llama 2模型,并将其性能与像GPT-4这样的预训练的LLM进行比较。在仿真和现实环境中的几个任务上都证明了结果。
摘要 ◥ 目的:PNOC003 是一项针对新诊断为弥漫性内在性脑桥神经胶质瘤 (DIPG) 的儿童和年轻人的多中心精准医学试验。患者和方法:患者 (3 – 25 岁) 入选依据是影像学检查符合 DIPG。收集活检组织进行全外显子组和 mRNA 测序。放射治疗 (RT) 后,根据分子肿瘤委员会的建议,患者被分配最多四种 FDA 批准的药物。纵向测量 H3K27M 突变型循环肿瘤 DNA (ctDNA)。使用全基因组测序和 DNA 甲基化分析来表征肿瘤组织和匹配的原代细胞系。在适用的情况下,在来自儿童脑肿瘤网络 (CBTN) 的独立队列中验证结果。结果:在入选的 38 名患者中,有 28 名患者 (中位数年龄 6 岁,10 名女性) 接受了分子肿瘤委员会的审查。其中 19
主席(博士)A.K JHA校长(Hamc&H,Dehradun)副主席(博士)Pushpa Rawat Rawat副副主任Kaya-Chikitsa副校长兼校长,召集人Nishant Rai Rai Jain Jain Jain Regrar(Himalayiya&Hirir sectriping and offriration)的Nishant Rai Jain Jain Jain Regrar(Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&Hamc&HAMC Srivastava教授兼BAL ROGA部门,HAMC&H联合组织秘书N.K Bhatt博士N.K Bhatt博士,Swasthvritta,Hamc&H。Vipin Kumar Bhatt瑜伽系助理教授。H.U Bharati Jaiswal博士自然疗法系助理教授。 H.U财务主管Pankaj Raturi博士,Hamc&H Kaya-Chikitsa系助理教授。H.U Bharati Jaiswal博士自然疗法系助理教授。H.U财务主管Pankaj Raturi博士,Hamc&H Kaya-Chikitsa系助理教授。H.U财务主管Pankaj Raturi博士,Hamc&H Kaya-Chikitsa系助理教授。
1。Sharma O.P.,1993。植物分类学。第二版。McGraw Hill出版商。2。Pandey B.P.,2001。植物植物的教科书。第四版。S. Chand Publishers,印度新德里。 3。 Jordan E.L.,Verma P.S.,2018年。 弦动物学。 S. Chand Publishers,印度新德里。 4。 Rastogi,S.C.,2019年。 动物生理的要点。 第四版。 新时代国际出版商。 5。 Verma P.S.,Agarwal V.K.,2006年。 细胞生物学,遗传学,分子生物学,进化和生态学。 S. Chand Publishers,印度新德里。 6。 Sathyanarayana U.,Chakrapani,U.,2013年。 生物化学。 第四版。 Elsevier Publishers。 7。 Jain J.L.,Sunjay Jain,Nitin Jain,2000年。 生物化学的基础。 S. Chand Publishers,印度新德里。 8。 Karen Timberlake,William Timberlake,2019年。 基本化学。 第五版。 皮尔逊出版商。 9。 Subrata Sen Gupta,2014年。 有机化学。 第一版。 牛津出版商。S. Chand Publishers,印度新德里。3。Jordan E.L.,Verma P.S.,2018年。弦动物学。S. Chand Publishers,印度新德里。 4。 Rastogi,S.C.,2019年。 动物生理的要点。 第四版。 新时代国际出版商。 5。 Verma P.S.,Agarwal V.K.,2006年。 细胞生物学,遗传学,分子生物学,进化和生态学。 S. Chand Publishers,印度新德里。 6。 Sathyanarayana U.,Chakrapani,U.,2013年。 生物化学。 第四版。 Elsevier Publishers。 7。 Jain J.L.,Sunjay Jain,Nitin Jain,2000年。 生物化学的基础。 S. Chand Publishers,印度新德里。 8。 Karen Timberlake,William Timberlake,2019年。 基本化学。 第五版。 皮尔逊出版商。 9。 Subrata Sen Gupta,2014年。 有机化学。 第一版。 牛津出版商。S. Chand Publishers,印度新德里。4。Rastogi,S.C.,2019年。动物生理的要点。第四版。新时代国际出版商。5。Verma P.S.,Agarwal V.K.,2006年。细胞生物学,遗传学,分子生物学,进化和生态学。 S. Chand Publishers,印度新德里。 6。 Sathyanarayana U.,Chakrapani,U.,2013年。 生物化学。 第四版。 Elsevier Publishers。 7。 Jain J.L.,Sunjay Jain,Nitin Jain,2000年。 生物化学的基础。 S. Chand Publishers,印度新德里。 8。 Karen Timberlake,William Timberlake,2019年。 基本化学。 第五版。 皮尔逊出版商。 9。 Subrata Sen Gupta,2014年。 有机化学。 第一版。 牛津出版商。细胞生物学,遗传学,分子生物学,进化和生态学。S. Chand Publishers,印度新德里。 6。 Sathyanarayana U.,Chakrapani,U.,2013年。 生物化学。 第四版。 Elsevier Publishers。 7。 Jain J.L.,Sunjay Jain,Nitin Jain,2000年。 生物化学的基础。 S. Chand Publishers,印度新德里。 8。 Karen Timberlake,William Timberlake,2019年。 基本化学。 第五版。 皮尔逊出版商。 9。 Subrata Sen Gupta,2014年。 有机化学。 第一版。 牛津出版商。S. Chand Publishers,印度新德里。6。Sathyanarayana U.,Chakrapani,U.,2013年。 生物化学。 第四版。 Elsevier Publishers。 7。 Jain J.L.,Sunjay Jain,Nitin Jain,2000年。 生物化学的基础。 S. Chand Publishers,印度新德里。 8。 Karen Timberlake,William Timberlake,2019年。 基本化学。 第五版。 皮尔逊出版商。 9。 Subrata Sen Gupta,2014年。 有机化学。 第一版。 牛津出版商。Sathyanarayana U.,Chakrapani,U.,2013年。生物化学。第四版。Elsevier Publishers。7。Jain J.L.,Sunjay Jain,Nitin Jain,2000年。生物化学的基础。S. Chand Publishers,印度新德里。 8。 Karen Timberlake,William Timberlake,2019年。 基本化学。 第五版。 皮尔逊出版商。 9。 Subrata Sen Gupta,2014年。 有机化学。 第一版。 牛津出版商。S. Chand Publishers,印度新德里。8。Karen Timberlake,William Timberlake,2019年。基本化学。第五版。皮尔逊出版商。9。Subrata Sen Gupta,2014年。有机化学。第一版。牛津出版商。
教师名称缩写主题主题代码先生先生Amit Kumar pe Profifelty伦理CSC 692 Gaurav Jain Jain Ml Machine Learning(Th+Lab)CSC 651 B.S Bhati博士B.S Bhati Internet博士(Th+Lab)CSC 661 CSC 661 ASHISH RANJAN ASE ASE ASE ASE ASE ASE ASE ASPART SOFTWARD SOFTWARE INTERKION(TH)602 ARICTICERICENT(TH)AIDAB DR. AIRAB JAIN CARINCERICER(TH)AIRAB JAIN CAR) Kumar Minor Project Minor Project(LAB)CSC 601 Akansha Tripathi ASE ASE ADVAND ADVAND SOFTWARD ENGIFEERING LAB CSC 605
Anil Kumar。 n印度卡纳塔克邦的EEE Ja那教理工学院达瓦纳格雷。 anilkumar.n.061@gmail.com Sanjay Reddy。 印度卡纳塔克邦的EEE Ja那教理工学院Div>系。 sanjusrinivas8055@gmail.comAnil Kumar。n印度卡纳塔克邦的EEE Ja那教理工学院达瓦纳格雷。anilkumar.n.061@gmail.com Sanjay Reddy。印度卡纳塔克邦的EEE Ja那教理工学院Div>系。sanjusrinivas8055@gmail.com
在多层菱形石墨烯上进行的最新实验在该制度中发现了许多有趣的现象,在该制度中,整数和分数量子异常的霍尔现象先前被报道。特别是在低温(T)和低施加电流下,在广泛的相图范围内可以看到“扩展”整数量子异常大厅(EIQAH)。随着电流的增加,在低t时,eiqah在通用填充物处向金属状态进行过渡,并在Ja那教填充物处向分数量子异常大厅(FQAH)状态。在Ja那教填充物处的温度升高也导致Eiqah到Ja那教状态的演变。在这里,我们提供了许多这些观察结果的解释。我们将EIQAH描述为一种结晶状态(掺杂到ν= 1状态的孔中的孔,或者是电子的异常大厅晶体),它破坏了Moir´e翻译对称性。在通用填充物上,我们展示了电流诱导的晶体顺序的繁殖转变导致与实验一致的特殊非线性电流曲线。在Ja那教填充物中,我们建议默认过渡是通过Eiqah和Jain FQAH国家之间的平衡过渡来抢占的。这种转变是由于Ja那教fQAH状态的极度极化而发生的,这使其能够在与晶体状态相比在应用的电场中有效降低其能量。我们还讨论了晶体和FQAH状态的相对熵的有限温度演变。