获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要:Palimpsests是已被刮擦或洗涤以重复使用的手稿,通常是另一个文档。恢复这些工具的不足文字对人文学者的学者具有重大兴趣。因此,学者经常采用多光谱成像(MSI)技术来渲染可见的无斑点。尽管如此,在许多情况下,这种方法可能不够,因为所得图像中的不足仍然被过度文字所掩盖。生成人工智能领域的最新进展为识别高度复杂的视觉数据中的模式并相应地重建它们的前所未有的机会。因此,我们提出将这一挑战作为计算机视觉中的一项介绍任务,旨在通过生成图像插入来增强未底文本的可读性。为了实现这一目标,我们设计了一种新的方法来生成合成的多光谱图像数据集,从而提供了大量的培训示例而无需手动注释。此外,我们还采用了该数据集来微调生成涂层模型,以提高palimpsest Undertext的可读性。使用来自西奈山的高加索阿尔巴尼亚底部文字的格鲁吉亚紫菜的彩色和MSI图像证明了这种方法的功效。