Ackanowents的商人恩格尔恩格伯(Engebor)恩格伯(Engebor)的vAds,包括Flompos Champotos,Lucy Hummer,Lims,Litch,Gregot,Ne Ne Thesso。lotrict幽默,恢复/或重新安装inlumide,电话的讲座:Babakava,Xing Zhang,Mingn Zhang(Gem); QI QI,Sivine Nye Little,Sunil Empire Sunil,Hasan,Laurri Myllilavirta(Crea); Oydu区,Samora,Hakko,Yoko Mullulland,Peinsot(E3G); Yann Louutl,Julie Lassus,Paddy McCully,Cletent Faul(收回金融); Goghon Go,支持Hwang Jeong,Evgeny,Wooyoung Lee(Sffoc); Iski Suzuk(Chiko Network); Eliff Cansālhan,Treath的Özms(Eurpee Europes);与Meedi见面(BWGD&续);贾米姆(Jamim)的谢里夫(Whora); Zakaki Amali,Fadikla Mifloula,Twi的儿子Palameshi(无亚洲的Plish); Azar是Azar(prid); Melej Gizo,Sura Larain(智利SUSSTALLABLE); Combriza Media,Mariana Villas(Polt Transcience Values);里卡多·克鲁兹(Ricardo Cruz),皮拉拉斯·罗德里戈(InicativaclimáticaClimática进入梅西奥);尼科尔·菲诺(Niccole Figuo)在奥利维拉(Oliveyira),安东·施维尔(Anton Schwir),克拉尤德(Cláududire)的阿顿(Aton))。
BrainWAVE:一种跨物种无创刺激脑节律的灵活方法 缩写标题 BrainWAVE:无创刺激脑节律 作者及所属机构 Matthew K. Attokaren †1 、Nuri Jeong †1,2 、Lou Blanpain 1,2 、Abigail L. Paulson 1 、Kristie M. Garza 1,2 、Ben Borron 1 、Michael Walelign 1 、Jon Willie 3 、Annabelle C. Singer* 1,2 1. 佐治亚理工学院和埃默里大学库尔特生物医学工程系,美国佐治亚州亚特兰大 2. 埃默里大学神经科学研究生课程,生物和生物医学科学研究生部,美国佐治亚州亚特兰大 30322 3. 华盛顿大学神经外科、生物医学工程、精神病学、神经科学和神经病学,密苏里州圣路易斯 63110 †同等贡献 作者贡献 MKA、LB、ALP、KMG、BB、MW 和 ACS 设计研究、开发方法并贡献未发表的试剂/分析工具;MKA、ALP、LB、KMG、BB、NJ、JW 收集并分析数据;MKA、NJ、ACS 构思并撰写手稿;所有作者阅读并编辑手稿;JW 和 ACS 指导研究。 * 通讯地址为 asinger@gatech.edu 图表数量:5
kaist(作为博士后)大韩民国塞缪尔·萨姆·伊斯法法(Samuel“ sam” yassefa(bs,bs,intern @ kaist)2025年1月 - 当前的gosu choi(BS,bs,intern @ kaist)2024年12月 - 目前的daeheon jeong(当前的daeheon “ Noza” Yadgarova(BS,实习生 @ kaist)2023年12月 - 2025年2月Jiangnan Xu(Phd @ rit,访问研究员 @ kaist→postdoc @ tempere @ tempere Univ。)Jan 2024 – Sep 2024 Haeseul Cha (BS, Intern @ KAIST) Jan 2024 – Sep 2024 Bekzat Tilekbay (MS @ KAIST) Jan 2024 – Mar 2024 Hai-Nam “Nam” Cao (BS, Intern @ KAIST → MS @ KAIST) Jun 2023 – Dec 2023 Jihyeong Hong (MS @ KAIST → Naver) Mar 2023 - 2023年10月Daeun Choi(MS @ Kaist→PhD @ kaist)2023年2月 - 2023年10月H hunwoo Kim(Phd @ kaist)2021年12月 - 2023年10月2023年10月2023年尼克斯·李(BS,bs,bs,bs,bs,intern @ kaist @ kaist),2023年3月2023年8月2023日202323 YOONSUKIM @ kaim @ kaise @ kaist→ 2023 Seulgi Choi(MS @ Kaist)2022年7月 - 2023年3月
Dong-Ho Lee 1 , Hwan-Seok Jeong 1 , Yeong-Gil Kim 1 , Myeong-Ho Kim 2 , Kyoung Seok Son 2 , Jun Hyung Lim 2 , Sang-Hun Song 1,* , and Hyuck-In Kwon 1,* Abstract —In this study, a quantitative analysis was conducted on the effects of channel width on electrical performance degradation induced by self-heating stress (SHS) in顶门自我对准的共蓝淀粉锌氧化物(IGZO)薄膜晶体管(TFTS)。从SHS之前和之后获得的转移和电容 - 电压曲线,我们透露,TFT的电性能沿通道长度方向不均匀地降解,并且该降解的程度在具有较宽通道宽度的TFT中更为显着。在制成的Igzo TFT中,SHS下的阈值电压偏移(δVTh)主要归因于Igzo活性区域的浅供体状态的密度和受体样的深状态的增加,并且电子陷入了Sio X Gate Patectric中的快速和慢速陷阱。此外,我们使用基于状态δVTh Th Th的TFTs的TFTS的子仪密度来进行SHS诱导的δv Th起源于每个降解机制。尽管每种降解机制的每一个δv th都随着通道宽度的增加而增加,但增加了电子捕获到Sio X Gate中的慢陷阱
d28 Maja Kadic Tushara Sadasivuni病毒化Maximilian Arendale,Brandon Chung,Peter Kim,Aneesh Pallapolu D29 Newton Pham Tushara Sadasivuni和In-In Invan Loh,Nethmee Perara dawawate。 Christian Spencer,Abraham Ochoa D30 Komal Ganta Tushara Sadasivuni Tessrae(Scrambler密码)KOI Steward,Junyeong哦,Yesenia Hurtado,Julian Hernandez D31 Joshua投票移动应用程序Osaid Zeyad,Trinity Gordon,Jared Stewart,Andy Kang D32 James Parker Tushara Sadasivuni政策政策投票移动应用程序Kamil Elwawi,Khang Truong,Sofia Lug-Bob-Bobonilla,Christophler, D33 Steven Ton Tushara Sadasivuni TimeSync Abdul Fawy, Aqra Qadeer, Dylan Trejo, Elaf Mustafa, Lorry Hoang D34 Zian Chowdhury Tushara Sadasivuni Care Hub Ngoc Minh Thy Nguyen, Steven Tea,Andy Ha,Abdul-Malik Mohammed D35 Richard Duel Tushara sadasivuni预算叮咬Anvar Suleyman,Zoe Cryton,Christopher Baez,Joe Yonathan,Mitchell Bailey Bailey D36 Ritik Patela Tushara Tushara Tushara Sadla废料Ri Merritt,Jae Jeong,Ryan Tran,Robbie Jr Owivry D37 Karrim Muhammad
在弯路上驾驶时执行次要任务(或与驾驶无关的任务)可能存在风险且不安全。本研究的目的是探索是否可以使用多种眼球运动测量方法来评估弯路和次要任务情况下的驾驶安全性。除了典型的静态视觉测量(例如扫视频率和持续时间)之外,我们还采用了基于马尔可夫的转换算法(转换/平稳概率、熵)来量化驾驶员的动态眼球运动模式。这些算法的评估基于一项实验(Jeong & Liu,2019)的数据,该实验涉及多种道路曲率和刺激-反应次要任务类型。在较陡的弯道中,驾驶员更有可能长时间扫描少数感兴趣的区域。在实验中,不太陡的弯道中总的低头扫视时间更长,但从长远来看,较陡的弯道中低头扫视的概率更高。感兴趣区域之间的可靠转换次数因次要任务类型而异。视觉要求不高的任务的视觉扫描模式与视觉要求高的任务一样随机。与典型的静态测量相比,基于马尔可夫的动态眼球运动测量可以更好地了解驾驶员的潜在心理过程和扫描策略。所提出的方法和结果可用于车载系统设计和进一步分析交通领域的视觉扫描模式。
在弯路上驾驶时执行次要任务(或与驾驶无关的任务)可能存在风险且不安全。本研究的目的是探索是否可以使用多种眼球运动测量方法来评估弯路和次要任务情况下的驾驶安全性。除了典型的静态视觉测量(例如扫视频率和持续时间)之外,我们还采用了基于马尔可夫的转换算法(转换/平稳概率、熵)来量化驾驶员的动态眼球运动模式。这些算法的评估基于一项实验(Jeong & Liu,2019),该实验涉及多种道路曲率和刺激-反应次要任务类型。在较陡的弯道中,驾驶员更有可能长时间扫描少数感兴趣的区域。在实验中,不太陡的弯道中总的低头扫视时间更长,但从长远来看,较陡的弯道中低头扫视的概率更高。感兴趣区域之间的可靠转换次数因次要任务类型而异。视觉要求不高的任务的视觉扫描模式与视觉要求高的任务一样随机。与典型的静态测量相比,基于马尔可夫的动态眼球运动测量提供了更好的洞察力,可以更好地了解驾驶员的潜在心理过程和扫描策略。所提出的方法和结果可用于车载系统设计和进一步分析交通中的视觉扫描模式
应将通讯发送到Junho Jeong:yanyenli@dongguk.edu文章INFO杂志机器和计算杂志(http://anapub.co.co.ke/journals/jmc/jmc/jmc.html)doi:修订表格2022年12月18日; 2022年12月30日接受。2023年4月5日在线可用。©2023作者。由Anapub出版物出版。这是CC BY-NC-ND许可证下的开放访问文章。(http://creativecommons.org/licenses/by-nc-nd/4.0/)摘要 - 这项研究调查了在通信网络中使用神经计算技术的使用,并根据错误率,延迟和吞吐量评估其性能。结果表明,不同的神经计算技术,例如人工神经网络(ANN),卷积神经网络(CNN),复发性神经网络(RNN),长期短期记忆(LSTM)和生成的对抗网络(GAN)在提高绩效方面具有不同的权衡。技术的选择将基于应用程序的特定要求。研究还评估了不同通信网络体系结构的相对性能,并确定了与在通信网络中应用不同技术相关的权衡和限制。研究表明,需要进一步的研究来探索技术的使用,例如深度强化学习;在通信网络中,并研究如何使用技术的使用来提高通信网络的安全性和鲁棒性。关键字 - 人工神经网络(ANN),卷积神经网络(CNN),经常性神经网络(RNN),长期短期记忆(LSTM),生成对抗网络(GANS)。
Organizing Committee Honorary Chairs Jong-Hwan Kim, KAIST, Korea Hyun Myung, KAIST, Korea Jun Jo, Griffith University, Australia General Chairs Hae-Won Park, KAIST, Korea Hyondong Oh, UNIST, Korea Program Chairs Daehyung Park, KAIST, Korea Cunjia Liu, Loughborough University, UK Organizing Chairs Jeong hwan Jeon, UNIST, Korea帕维尔·拉多斯(Pawel Ladosz),英国曼彻斯特大学特别会议主席,迈恩·琼·黄 Kim, KAIST, Korea Publicity Chairs Kyuman Lee, Kyungpook National University, Korea Sehoon Ha, Georgia Tech, USA Donghyun Kim, University of Massachusetts, Amherst, USA Kyunam Kim, Sungkyunkwan University, Korea Dongheui Lee, TU Wien, Austria Shaoming He, Bejing Institute of Technology, China Antonios Tsourdos,克兰菲尔德大学,英国克兰菲尔德大学,刘南刘,伦敦大学学院(UCL),英国,安瓦尔PP Abdul Majeed,马来西亚joao sequeira,sequeira,葡萄牙Sequeira,Sequeira Instituto Sepequeira,葡萄牙奖,Seungkeun Kim,Chungnam National University,Korea donggun Lee,北卡罗莱纳州北卡罗来纳州,美国北卡罗来Pablo Air,韩国
第 21 卷:新自由主义的危机、积累和罗莎·卢森堡的遗产——由 P. Zarembka 和 S. Soederberg 编辑 第 22 卷:资本主义国家及其经济:社会主义中的民主——由 P. Zarembka 编辑 第 23 卷:2001 年 9 月 11 日的隐秘历史——由 P. Zarembka 编辑 第 24 卷:拉丁美洲、波兰和叙利亚的转变——由 P. Zarembka 编辑 第 25 卷:资本主义为何能在危机中生存:减震器——由 P. Zarembka 编辑 第 26 卷:民族问题和危机问题——由 P. Zarembka 编辑 第 27 卷:为当今资本主义振兴马克思主义理论——由 P. Zarembka 和 R. Desai 编辑 第 28 卷:矛盾:财政、贪婪和不平等的劳动报酬——第 29 卷:对斯拉法和阿尔都塞的再思考;新自由主义在南非、英国和希腊的推进——由 P. Zarembka 编辑 第 30A 卷:地缘政治经济学的理论参与——由 R. Desai 编辑 第 30B 卷:地缘政治经济学的分析成果——由 R. Desai 编辑 第 31 卷:冒险的资本主义——由 S. Soederberg 编辑 第 32 卷:马克思主义宏观动态在东亚的回归——由 M. Ishikura、S. Jeong 和 M. Li 编辑 第 33 卷:跨国公司在全球南方对环境的影响——由 P. Cooney 和 WS Freslon 编辑 第 34 卷:资本主义边缘的阶级历史和阶级实践——由 P. Zarembka 编辑