2. 位置和描述:1970 年 4 月 8 日第 91 届国会第 2 届会议众议院文件 91-303 描述了对现有项目的修改,以便通过防波堤稳定俄勒冈湾,包括绕过海湾的沙子和将海洋沙洲处的航道加深 14 至 20 英尺)。当前项目位于北卡罗来纳州戴尔县外滩部分。该项目通过俄勒冈湾从大西洋进入,在赫伯特·C·邦纳桥下,在入口航道旁边建造一条 14 英尺深、400 英尺宽的先进维护加宽器,以及从俄勒冈湾到帕姆利科湾、万切斯港、浅袋湾港和阿尔伯马尔湾的 12 英尺深、100 英尺宽的项目内部航道。所有航道的长度为 25.4 英里。 3. 成本估算:总体重新评估报告/可行性研究
学生项目概述:NASA 寻求创新的废物抛射系统,该系统必须高效可靠,以免对航天器、机组人员或其他行星造成危险。在没有废物抛射系统的情况下,由于航天器在机动过程中质量较大,因此任务将需要额外的推进剂。因此,需要一个飞行中的大质量废物控制系统来向太阳抛射。
摘要:当前的添加剂制造(AM)技术可以使用多种塑料,金属和陶瓷材料制造具有复杂几何形状的零件。目前,集成技术的进步有限,可以在同一部分打印不同的材料。键合零件需要进一步处理;它还创建了与应力浓度令人衰弱的界面。总体而言,零件性能受到损害。因此,在3D打印多物质和功能分级的零件中有值。在这里,报道了一种新型的粘合剂喷射方法,用于单步生产多物质和功能分级的零件。该方法将纳米颗粒墨水沉积在粘合剂中。陶瓷,聚合物或金属粉末必定会构建纳米复合材料。通过在打印过程中切换纳米粒子油墨,该过程构建了具有分级电导率和柔韧性的材料。为了演示该方法,制定了氧化石墨烯(GO)墨水,用于打印到聚乙烯醇(PVOH)粉末上。最终产品是一种GO/PVOH复合材料,具有电导率和高灵活性。该复合材料显示为超级电容器应用的高孔隙率材料。
许多增材制造 (AM) 技术都依赖于粉末原料,这些原料通过熔化或化学结合随后烧结形成最终部件。在这两种情况下,工艺稳定性和最终部件质量都取决于粉末颗粒和流体相(即熔融金属或液体粘合剂)之间的动态相互作用。本研究提出了一种通用的计算建模框架,用于模拟涉及热毛细管流动和可逆相变的耦合微流体-粉末动力学问题。具体而言,液相和气相与由基材和移动粉末颗粒组成的固相相互作用,同时考虑温度相关的表面张力和润湿效应。在激光-金属相互作用的情况下,快速蒸发的影响通过额外的机械和热界面通量来整合。所有相域都使用光滑粒子流体动力学进行空间离散化。该方法的拉格朗日性质在动态变化的界面拓扑背景下是有益的。在制定相变时要特别小心,这对于计算方案的稳健性至关重要。虽然底层模型方程具有非常通用的性质,但所提出的框架特别适用于各种 AM 过程的中尺度建模。为此,通过几个应用驱动的示例证明了计算建模框架的通用性和稳健性,这些示例代表了特定的 AM 过程,即粘合剂喷射、材料喷射、定向能量沉积和粉末床熔合。除其他外,它还展示了粘合剂喷射中液滴的动态影响或粉末床熔合中蒸发引起的反冲压力如何导致粉末运动、粉末堆积结构的扭曲和粉末颗粒的喷射。
朝着工业和学术的角度实现强大的潜在应用。表面上操纵缓冲液和有机溶剂对于许多生物,医学和/或化学操作都是基础。[1-9]用于迅速现场诊断和治疗,临床诊断,基于细胞的应用以及检测或感测的护理点应用是使用情况的例子。[10]大量精力集中在微型化和自动化上,也可以将它们视为远程医疗应用的可能路线,提高效率并减少所涉及的材料总量。例如,在进行诊断测试的情况下,涉及微流体芯片涉及的生物材料和化学试剂的减少可以对比化学成本,增加总加工测试的数量,加快时间的加快时间,并且在自动化的情况下,还可以降低交叉污染和维持的风险。基于智能表面的不同解决方案已被提出,用于控制液滴运动并开放两相油 - 水分离,生物技术,自我清洁和抗质应用,只是为了引用很少的。[11-14]在平面表面上,可以使用多种开发的方法来控制液滴的运动,例如表面声波,磁对照表面,热毛细血管,介电粒细胞感和电trowetting-n-eilectric芯片。[25,26][15–21]在后一种情况下,电极的像素尺寸限制了可以操纵的最小液滴尺寸,以克服该问题,已经提出了轻图案的电解图,以在开放的,毫无曲线的,特征和光导能的表面上进行液滴操纵。[22]创建液体操作表面梯度的替代方法包括对外部刺激的响应改变表面电荷密度和质地的改变(例如,磁/电场)以及表面富集,具有化学功能基团的表面群体,以动态地控制表面的性能,[23,24]越来越需要创建平坦的模式,或者在平坦的范围内屈曲,或者是柔韧性的,或者是柔韧性的。
近年来,增材制造技术领域的发展呈指数级增长,为各个领域带来了诸多优势,包括材料种类繁多、几何自由度高、材料浪费少和实现速度快。对于金属而言,最发达的技术是粉末床技术,主要是基于熔合,最终结构通过激光或电子束加固。利用这些技术,可以实现接近传统金属的出色形状和密度。另一方面,在粘合剂喷射技术中,液体粘合剂滴的沉积使灰尘颗粒能够逐层连接,类似于 3D 打印。生产的部件必须经过脱脂和烧结工艺才能达到最终密度。大多数研究都是为了完善工艺参数以确保机械性能,但在腐蚀行为领域的研究却很少。
摘要:具有与人体组织相对应的物质特性的现实,高保真的解剖模型可用于外科计划和培训,医学教育和医疗设备测试和验证。解剖模型的常规制造是一个耗时且昂贵的过程,尽管如此,它仍无法完全模仿人体在几何和机械性能方面的复杂性。以快速且具有成本效益的方式创建更接近现实的模型,添加剂制造,尤其是材料喷射的过程,可以是一种解决方案。利用此过程,可以制造具有复杂几何形状,高分辨率甚至材料特性梯度的多色多色对象。要复制生物组织的机械性能,必须将它们与可用于利用制造工艺的技术材料或材料组合匹配。因此,作者建议根据标准化测试程序(如凹痕测试的拉伸和ISO 48-4)进行测量,用于凹痕测试,这允许与制造材料匹配,因此将导致可能创建更准确的人体复制品,从而提供现实的具有现实的具有逼真的具有逼真的作用反馈。
在混凝土中,由微生物引起的腐蚀也被称为微生物学诱导的恶化或中间。微生物可以附着并在混凝土结构上定植,并产生导致混凝土化合物降解的酸(Wei等,2013)。微生物的活性可以降低混凝土结构的使用寿命,并通过提高混凝土孔隙率,减少保护性覆盖深度,帮助混凝土表面侵蚀以及促进降解材料转运到混凝土(Sanchez-silva et al,2008年)。