摘要众包信息可用于校准自动和自动驾驶汽车的高级驾驶员辅助系统/自动驾驶(ADAS/AD)参数。但是,在车辆网络中学习此类信息是具有挑战性的。一方面,单个车辆收集的数据可能不足以训练大型机器学习模型。另一方面,将原始数据上传到云服务器同样是不切实际的,这是由于符合通信的带宽要求和数据隐私威胁。本文通过应用联合学习(FL)寻求解决方案。我们旨在提高FL算法稳定性以提高预测准确性。因此,我们提出了一种基于方差的和结构感知的FL(VSFL),其中引入了FL服务器的基于方差的模型聚合方法,以进行最佳模型聚合,并为车辆客户提供了一个结构性模型培训方案,以解决统计异质性,而不会损害性能。我们首先为拟议的VSFL提供了理论分析。然后,我们使用合成数据和实际数据验证VSFL算法对车辆轨迹预测的效果。
已发表版本引文(哈佛):Zeng, N, Jiang, L, Vignali, G & Ryding, D 2023,奢侈品零售中的客户互动体验:人工智能聊天机器人在互动营销中的应用。CL Wang(编辑),《帕尔格雷夫互动营销手册》。Palgrave Macmillan,第 785-805 页。https://doi.org/10.1007/978-3-031-14961-0_34
结果 1990 年至 2019 年,全球甲状腺癌的年龄标准化发病率 (ASIR) 有所增加,在两个研究时间点,女性的总体疾病负担均高于男性。ASIR 的男女比例从 1990 年的 0.41 增加到 2019 年的 0.51,而年龄标准化死亡率 (ASDR) 的比例从 0.60 增加到 0.82。模型预测,2020-30 年阿拉伯联合酋长国的 ASIR(估计年度百分比变化 (EAPC) = 4.19)和年龄标准化 DALY 率(EAPC = 4.36)将呈现最快的上升趋势,而圣基茨和尼维斯的 ASDR(EAPC = 2.29)将呈现最快的上升趋势。同时,预计在此期间各国的 ASDR 和年龄标准化 DALY 率的增长趋势都将增加。对 1990-2019 年和 2020-30 年全球甲状腺癌负担的相关性分析表明,在低 SDI 和中低 SDI 国家,ASIR 的增长与社会人口指数 (SDI) 之间存在显著的正相关性。
1 Precision制造中心,DMEM,Strathclyde大学,格拉斯哥,英国w.xie@strath.ac.uk摘要摘要实现了对氧化增长的精确控制已成为局部阳极氧化(LAO)纳米术的质量控制的关键瓶颈,这是由于缺乏有效的流程监测和反馈控制方法而导致的纳米术。在这种情况下,本文提出并提出了一种现场检测方法,使用高度耐用的导电钻石涂层探针在老挝过程中实时监测氧化生长的状态。研究结果表明,使用钻石涂层的探针可以在微型水平上诱导具有瞬态电流的可控老挝,并创建高度超过18 nm的纳米结构,这尤其优于使用掺杂的硅探针获得的纳米结构。还证明,在一定的电压范围内,检测到的电流可以反映纳米碱制造过程中氧化的生长,检测到的电流与氧化表面的电导率相关,表明氧化程度。可以预期,与柔性脉冲调制的组合将有助于一种柔性,简单的方法来调整氧化生长,为生产高质量的氧化物线铺平道路。原子力显微镜,监测,纳米制造,氧化
•我们提出了一种新颖的算法,具有算法工具(计划)的悲观政策学习,该算法利用仪器变量回归的思想和悲观原则在一般功能近似的背景下学习了近乎最佳的本金政策。
社会。最重要的是,迄今为止,针对这一系列致残或限制生命的疾病,获得许可的治疗方法极其有限(Chinnery,2015;Viscomi 等人,2023)。线粒体疾病的治疗方法包括对症治疗以改善生活质量或延长寿命,以及基因治疗以减少异质体并治愈细胞生化缺陷。对症治疗包括操纵线粒体的细胞含量、通过雷帕霉素诱导线粒体周转、恢复 NAD + 水平、调节活性氧的产生和氧化应激等(Russell 等人,2020)。基因治疗包括直接编辑线粒体基因组、基因替代疗法(Silva-Pinheiro 等,2020;Ling 等,2021)和线粒体移植疗法(Green field 等,2017)。基因编辑技术作为一种潜在的治疗选择,在过去十年中已在核遗传疾病的治疗中得到广泛研究(Sharma 等,2015;Nelson 等,2016;De Ravin 等,2017;Zheng 等,2022),越来越多的临床试验正在进行中(Arabi 等,2022)。然而,由于缺乏有效的工具来操纵 mtDNA( Silva-Pinheiro 和 Minczuk,2022 年),其在由 mtDNA 突变引起的线粒体疾病中的意义受到阻碍,除非通过锌指融合( Minczuk et al., 2008; Gammage et al., 2014; Gammage et al., 2016a; Gammage et al., 2016b; Gammage et al., 2018b )或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)切割和消除有害的 mtDNA 拷贝。线粒体DNA碱基编辑技术目前已发展成为生物技术中最常用的编辑技术之一(Pereira et al., 2018),以及基于TALE系统的单体酶(Pereira et al., 2018)。近年来,基于TALE的线粒体DNA碱基编辑工具陆续被引入,第一种是DddA衍生的胞嘧啶碱基编辑器(DdCBE)(Mok et al., 2020),它为按预期操纵线粒体DNA打开了大门。DddA系统来源于伯克霍尔德菌,DdCBE由两半无毒的TALE融合分裂DddA(DddA-N和DddA-C)组成,通过将这两半分裂的DddA重新组装成功能性脱氨酶,催化间隔区域内的胞嘧啶脱氨。目前,DdCBE 已成功应用于植物 (Kang et al., 2021)、哺乳动物细胞 (Mok et al., 2020)、斑马鱼 (Guo et al., 2021)、小鼠 (Lee et al., 2021; Lee et al., 2022a; Guo et al., 2022)、大鼠 (Qi et al., 2021) 甚至人类生殖细胞 (Wei et al., 2022a; Chen et al., 2022) 的线粒体 DNA 编辑。在我们的实验室中,它还已成功用于小鼠早期卵泡阶段的有效生殖系线粒体 DNA 编辑(已提交数据)。不幸的是,它在挽救线粒体疾病方面的应用极其罕见,无论是用于治疗研究(Silva-Pinheiro 等人,2022 年)还是用于临床试验(Chen 和 Yu-Wai-Man,2022 )。众所周知,潜在基因编辑结果的可预测性对于基因编辑技术在临床上用于基因治疗至关重要。为此,已经进行了大量的工作来了解CRISPR系统在核基因组编辑中对不同靶标的编辑规则,并且已经证明对于每个被CRISPR/Cas9编辑的原型间隔物来说,其结果是完全可预测的(van Overbeek et al., 2016 ; Shen et al., 2018 ; Shou et al., 2018 ; Allen et al., 2019 ; Chakrabarti et al., 2019 ; Chen et al., 2019 ; Long, 2019 ; Shi et al., 2019 ),这使我们能够提前知道每种策略在临床上应用的潜在结果。然而,对于线粒体基因组,由于缺乏 DNA 修复,CRISPR/Cas9 尚未参与 mtDNA 编辑
来自26例EOS CRSWNP患者,23例非EOS CRSWNP患者和15例对照患者的Sinonasal Mucosa标本来自Fudan University的耳鼻喉科,眼睛和耳朵,鼻子和喉咙医院。从解剖学变异的患者但没有鼻窦疾病的患者进行s炎或鼻塞成形术的情况下,以对照为对照。对于CRSWNP,使用了肉类中部地区的息肉组织样品。根据欧洲鼻炎和鼻息肉(EPOS),1基于病史,临床检查,鼻内镜检查和鼻窦计算机断层扫描(CT)扫描的鼻子疾病诊断。根据EPOS定义,将急性感染,真菌性鼻窦炎,囊性纤维化,触及息肉或胃食管反流病的患者排除在研究之外。在手术前的2周内,没有一个受试者接受抗组胺药,抗胰佳节,口服或鼻内断裂剂或鼻内抗胆碱药。在手术前至少4周,均未使用口服和局部应用皮质类固醇和抗生素。 怀孕或母乳喂养的女性也被排除在研究之外。 表1列出了本研究中所有受试者的人口统计数据。均未使用口服和局部应用皮质类固醇和抗生素。怀孕或母乳喂养的女性也被排除在研究之外。表1列出了本研究中所有受试者的人口统计数据。
我打算表明,海德格尔的本体论和马克思的政治经济分析都表明了人类与现代技术之间的不自由关系。我建议揭示它们之间的亲和力是我们理解这种关系的关键。通过阐明海德格尔(Heidegger)的“有关技术的问题”和马克思的首都和1844年的手稿中的主要概念,我建议尽管他们对现代技术的观点与人类的生活经验有关,尽管他们的整体论点有明显的差异。第一个亲和力是海德格尔和马克思都将现代技术视为通过抽象和操纵事物的有用部分以及通过对人类目的做出贡献的能力来确定事物的实用性来产生效果的一种手段。第二个亲和力在于他们对现代技术在生存中遇到的方式阻止人类阻止人类的观点。在海德格尔(Heidegger)和马克思(Marx)之间提出了这些亲密关系后,我将通过使用它们来解释沃尔夫冈·史基维尔布斯(Wolfgang Schivelbusch)的《铁路之旅》(The Railway Journey)来进一步桥梁,并将其背景与背景相关,在那里他对资本主义和铁路系统发展之间的紧密相互关系进行了观察。我将争辩说,这种桥接和背景化的亲和力的过程得出的结论是,资本主义本质上只允许规律性,统一性和生产力成为铁路运输的主要特征,而铁路运输反过来将其人类受试者限制在具有匹配素质的人中。
量子信息科学正处于变革的十字路口,即将彻底改变计算、密码学、通信、网络、计量、传感和成像等多个领域。在各种量子系统中,光子量子比特和中性原子是这场量子革命的关键催化剂。本演讲探讨了这些平台的协同融合,重点是通过相干原子集合中的自发四波混频 (SFWM) 开创窄带纠缠双光子源 [1,2]。值得注意的是,我们最近取得了一项独特的成就,首次通过热原子蒸汽中的自发六波混频 (SSWM) 创建了可靠的真正 W 级三光子源 [3],其产生速率达到了前所未有的水平。重要的是,这一突破无意中揭示了与几个世纪以来数学和天体力学中著名的三体问题的深刻联系。我们的旅程从基础量子概念开始,调查替代量子比特平台,并深入研究传统的双光子生成方法,如自发参数下转换 (SPDC) 和固体材料中的 SFWM。我们揭示了我们在相干原子内窄带双光子和三光子生成方面的最新突破,有望实现长距离量子信息处理和网络。单光子具有不可动摇的量子特性,可作为多功能信息载体,而中性原子则为培育长寿命量子比特和量子存储器提供了理想的环境。我们揭开了中性原子纠缠生成背后的复杂机制的神秘面纱,揭示了 SFWM 和 SSWM 原理。演讲最后展示了我们的最新进展,强调了我们在窄带纠缠光子中产生无与伦比的相干性和可调谐性的能力。这些属性推动了可扩展量子网络的发展,连接了量子处理器并实现了安全的全球信息交换。当我们踏上这段启迪之旅时,我们阐明了单光子和中性原子在推进量子信息科学和技术中的关键作用,激发了迈向量子未来的新研究途径。
Jianxin Chen是量子科学家,也是Damo量子实验室(Damo-QL)系统团队的负责人,这是阿里巴巴集团全球研究所Damo Academy的一个部门。江辛获得了他的学士学位和博士学位。 Tsinghua大学的计算机科学学位。在加入阿里巴巴之前,他曾在马里兰大学的量子信息与计算机科学联合中心担任Hartree研究员。江辛的主要研究重点是发展坚固且耐断层的量子计算机系统的发展。迄今为止,他在PRL,PRX量子,自然计算科学以及QIP和ASPLOS等顶级会议等顶级期刊上撰写并发表了70多种研究论文。江因是IEEE高级成员,他为著名会议的计划委员会积极贡献,例如QIP(量子信息处理),TQC(量子计算,通信和密码学理论)和IEEE量子周。