摘要。NTS-KEM 是 NIST 仍在争取标准化的 17 种后量子公钥加密 (PKE) 和密钥建立方案之一。它是一种基于代码的密码系统,从 (弱安全的) McEliece 和 Niederreiter PKE 方案的组合开始,并应用 Fujisaki-Okamoto (Journal of Cryptology 2013) 或 Dent (IMACC 2003) 变换的变体,在经典随机预言模型 (ROM) 中构建 IND-CCA 安全密钥封装机制 (KEM)。Hofheinz 等人 (TCC 2017)、Jiang 等人 (Crypto 2018) 和 Saito 等人 (Eurocrypt 2018) 也证明了这种通用 KEM 变换在量子 ROM (QROM) 中是安全的。但是,NTS-KEM 规范有一些特殊性,这意味着这些安全证明并不直接适用于它。本文确定了经典 ROM 中 NTS-KEM 的 IND-CCA 安全证明中的一个细微问题,如其初始 NIST 第二轮提交中所述,并对其规范提出了一些细微修改,不仅解决了这个问题,而且使其在 QROM 中具有 IND-CCA 安全性。我们使用 Jiang 等人(Crypto 2018)和 Saito 等人(Eurocrypt 2018)的技术为修改后的 NTS-KEM 版本建立了 IND-CCA 安全性降低,实现了 2 度紧密度损失;人们认为,这种类型的二次损失对于 QROM 中的减少通常是不可避免的(Jiang 等人,ePrint 2019/494)。根据我们的研究结果,NTS-KEM 团队接受了我们提出的更改,并将它们纳入到他们向 NIST 流程提交的第二轮更新中。
江X,Iseks S,Maxson,RE,Al:开发生物学2002 Yoshida T,Vivatbutsin P,Morriss-Kay G等:Mech Dev 2008
扭矩,其进动频率接近铁磁共振频率。这主要是由于磁滴模式的进动角较大[7,18,19]。然而,到目前为止,对磁滴的所有实验工作都集中在自旋阀(SV)结构[18,19,21-23]和自旋霍尔纳米振荡器(SHNO)[24,25]上。SV和SHNO中非常低的磁阻(MR)(约1%)限制了功率发射和基于STNO的任何进一步应用。相比之下,具有强PMA的磁隧道结 (pMTJ) 表现出较高的隧道磁阻 (TMR),达到 249%,尤其是双 CoFeB 自由层 (DFL) pMTJ,它已成为基于 MTJ 的 MRAM 的主要结构 [26]。因此,人们可以期望在基于 pMTJ 的 NC-STNO 中观察到磁性液滴。然而,我们之前的实验表明,在单自由层 (SFL) MTJ 中很难形成稳定的液滴 [27]。这可能是由于均匀电流密度与空间变化磁化相互作用产生的较大张-力矩所致。相反,预计 DFL pMTJ 可以抑制这种大的张-力矩并有利于形成稳定的磁性液滴。在这里,我们通过实验观察和研究了 DFL pMTJ 中的稳定磁性液滴,同时伴随着同一器件中相对于类 FMR 模式进动的功率增强。此外,通过微磁模拟,我们认为磁隧道结中的磁性液滴之所以稳定,主要是因为低的Zhang-Li力矩和DFL中强的钉扎场共同作用的结果[28]。我们的研究结果为磁隧道结中磁性液滴的成核提供了全面的认识,为进一步优化磁隧道结中磁性液滴的使用奠定了基础。
P. F. Jiang a , X. R. Li a , X. M. Zong b , X.B. 王 c 、Z. K. 陈 b 、 H. X. 杨 d 1 、 C. Z. 刘 e 、 N .K.高a,Z.Z 。
Le Cong, 1,2 * F. Ann Ran, 1,4 * David Cox, 1,3 Shuailiang Lin, 1,5 Robert Barretto, 6 Naomi Habib, 1 Patrick D. Hsu, 1,4 Xuebing Wu, 7 Wenyan Jiang, 8 Luciano Marraffini, 8 Feng Zhang 1 †