Leopoldo Angrisani, Department of Electrical and Information Technologies Engineering, University of Napoli Federico II, Naples, Italy Marco Arteaga, Departament de Control y Rob ó tica, Universidad Nacional Aut ó noma de México, Coyoac á n, Mexico Bijaya Ketan Panigrahi, Institute of Electrical Engineering, New Delhi, New Delhi , India Samarjit Chakraborty, Faculty of Electrical Engineering and Information Engineering, TU Munich, Munich, Germany Jiming Chen, Zhejiang University, Hangzhou, Zhejiang, China , National University of Singapore, Singapore, Singapore R ü diger Dillmann, Humanoids and Intelligent Systems Laboratory, Karlsruhe Institute for Technology, Karlsruhe, Germany Haibin Duan, Beijing University of Aeronautics and Astronautics, Beijing, China Robotics CAR (UPM-CSIC), Universidad Polit é cnica de Madrid, Madrid, Spain Sandra Hirche, Department of Electrical Engineering and Information Science, Technische Universit ä t München, Munich, Germany Traffic Control and Safety, Beijing Jiaotong University, Beijing, China Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland Alaa Khamis, German University in Egypt El Tagamoa El Khames, New Cairo City, Egypt Torsten Kroeger, Stanford University, Scal Engineering Department, CA, University of Texas at Arlington, Arlington, TX, USA Ferran Mart í n, Department of Electrical Engineering, Universitat Aut ò noma de Barcelona, Bellaterra, Barcelona, Spain Tan Cher Ming, College of Engineering, Nanyang Technological University, Singapore, Singapore Wolf Mink Institute of Technology, Ulman University, Germany deep Misra, Department of Electrical Engineering, Wright State University, Dayton, OH, USA Sebastian M ö ller, Quality and Usability Laboratory, TU Berlin, Berlin, Germany Subhas Mukhopadhyay, School of Engineering & Advanced Technology, Massey University, Palmerston North, Manawatu-Wangan Engineering, New Zealand Engineering, Arizona State University, Tempe, AZ, USA Toyoaki Nishida, Graduate School of Informatics, Kyoto University, Kyoto, Japan Federica Pascucci, Department of Engineering, Universit à degli Studi “ Roma Tre ” , Rome, Italy Yong Qin, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jian University, Electoral College, Beijing, China electronic Engineering, Nanyang Technological University, Singapore, Singapore Joachim Speidel, Institute of Telecommunications, Universit ä t Stuttgart, Stuttgart,德国 Germano Veiga,FEUP Campus,INESC Porto,葡萄牙波尔图 Haitao Wu,中国科学院光电研究院,中国北京 Junjie James Zhang,美国北卡罗来纳州夏洛特
重新利用全身麻醉的脑电图监测来建立大脑老化的生物标志物:一项探索性研究 David Sabbagh* a,b 、Jérôme Cartailler a,c 、Cyril Touchard c 、Jona Joachim c 、Alexandre Mebazaa a,c 、Fabrice Vallée a,b,c 、Étienne Gayat a,c 、Alexandre Gramfort b 、Denis A. Engemann* b,d,ea 巴黎大学,INSERM,U942 MASCOT,F-75006,法国巴黎 b 巴黎萨克雷大学,因里亚,CEA,帕莱索,法国 c 麻醉和重症监护医学系,AP-HP,Hôpital Lariboisière,F-75010,法国巴黎 d 马克斯·普朗克人类认知和脑科学研究所,系神经病学, D-04103,德国莱比锡和罗氏制药研究与早期开发、神经科学和罕见疾病、罗氏巴塞尔创新中心、F.霍夫曼 - 罗氏有限公司,瑞士巴塞尔 通讯:* david.sabbagh@inria.fr,denis.engemann@roche.com 背景:EEG 是监测麻醉深度的常用工具,但很少在生物医学研究中重新使用。本研究旨在探索在麻醉期间重新利用 EEG 来了解在失去意识的情况下大脑衰老的生物标志物。 方法:我们以大脑年龄估计为例。使用机器学习,我们重新分析了 323 名接受丙泊酚和七氟醚治疗的患者的 4 电极 EEG。我们应用最近发表的参考方法,将稳定麻醉的空间光谱特征纳入基于 EEG 的年龄预测中。当 95% 的总功率低于 8Hz 至 13Hz 之间的频率时,认为麻醉稳定。结果:我们考虑使用丙泊酚麻醉的中度风险患者(ASA <= 2)来探索预测性 EEG 特征。平均 alpha 波段功率(8-13Hz)可以提供年龄信息。然而,通过分析所有电极的整个功率谱(MAE = 8.2y,R2 = 0.65),可以实现最先进的预测性能。临床探索表明,大脑年龄与术中爆发抑制系统相关——通常与与年龄相关的术后认知问题有关。令人惊讶的是,高危患者(ASA = 3)的大脑年龄与爆发抑制呈负相关,这表明存在未知的混杂效应。二次分析显示,大脑年龄 EEG 特征是丙泊酚麻醉所特有的,这反映在七氟醚下的预测性能有限和跨药物泛化能力差。结论:全身麻醉中的脑电图可能实现最先进的脑年龄预测。然而,麻醉药物之间的差异会影响麻醉中脑电图再利用的有效性。为了释放脑电图监测在缺乏意识的情况下用于临床和健康研究的潜在潜力,收集具有精确记录的药物剂量的更大数据集将是关键的促成因素。关键词:全身麻醉、脑电图 (EEG)、脑老化、机器学习、爆发抑制、丙泊酚、七氟醚
贡献者(按字母顺序)清单Lisbeth Bakker,Centrum voor Energiebespaaring,Delft:生长的原因,无增长的RALF BEHRENSMEIER博士的影响,Wuppertal Institute,Div。材料流和结构变化:每个分支统计的环境空间消耗StefanieBöge,Wuppertal Institute,Div。运输:运输强度分析Stefan Bringzu博士,Wuppertal Institute,Div。用于材料流和结构变化区域物质流量分析Manfred Fischedick,Wuppertal Institute,Div。能量:能源场景和环境空间Tamara Hammer,Wuppertal Institute,Div。用于物质流和结构变化:水,劳动,消费埃卡德·希尔德布兰特博士,柏林Wissenschaftszentrum柏林:可持续社会的劳动的未来弗里德里希·辛特伯格(Friedrich Hinterberger)用于物质流量和结构变化:,生长和环境空间使用的脱节,限制生长哈里·莱曼,沃伯塔尔研究所,系统分析小组:欧洲的土地利用模式,克里斯塔·利德克(Christa Liedtke)博士,沃珀塔尔研究所,div。材料流和结构变化:MIPS方法论Fred Luks,Wuppertal Institute,Div。材料流和结构变化:生长和环境空间的开发链接,限制了生长尤里根·马利博士,杜波尔塔尔研究所,Div。材料流和结构变化:可持续性的物理指标托马斯·默滕(Thomas Merten),沃珀塔尔研究所(Wuppertal Institute)用于材料流和结构变化:,MIPS方法论MartinSchüssler,Wuppertal Institute,Div。材料流和结构变化:MIPS方法论Roland Pareyke,Wuppertal Institute,系统分析小组:土地使用和林业统计数据,Div。运输,主任:运输的环境相关性,概述Torsten Reetz,Wuppertal Institute,系统分析小组:欧洲的土地使用模式Phillip Schepelmann,Tu Berlin / foe dermany Dermany土地使用,林业和土壤退化,弗里德里希·Schmidt-Schmidt-Bleek博士,弗里德里希·施密特·布斯特(Friedrich Schmidt-Bleek)能源:能源场景HelmutSchütz博士,Wuppertal Institute,Div。材料流和结构变化:关键物质的环境空间Eberhard K. Seifert博士,工作组新的财富模型:新的经济指标Joachim H. Spangenberg,Wuppertal Institute,Div。用于材料流和结构变化:概念,可疑指标,森林Meike Spitzner,Wuppertal Institute,Div。运输:减少运输,需求和衡量乌尔苏拉·蒂沙纳(Ursula Tischner),沃珀塔尔研究所(Wuppertal Institute)用于物质流和结构变化:可持续性和设计Uta von Winterfeld博士,工作组新的财富模型:可持续消费,Gerrit de Wit博士,Delft,Centrum voor Energiebespaaring,Delft:增长的原因,无增长的影响
是由温室气体引起的,这是我们时代最大的挑战之一欧盟(EU)遇到了欧洲绿色协议的问题,并努力将温室气体的净排放量减少到零,从而扩大气候中立。作为这一目标的一部分,新的欧洲公司可持续性报告指令(CSRD)首次进行可持续性报告,旨在为可持续行为引起愤怒。特殊的含义是温室气体Kohlendioxide(CO 2),因为它约为欧盟总温室气体排放的80%。因此,有必要创建有关CO 2排放的透明度。为了以有针对性的方式进行改进,透明度和仅仅是外部报告是不够的。从公司的角度来看,应考虑各种决定。投资决策不仅应该基于经济标准,还应包括对CO 2目标的影响。还表明,消费者越来越多地包括在购买决策中造成的CO 2排放中。尽管可持续性的重要性越来越重要,但控制的主题通常尚未得到充分考虑。在第一篇文章中,卡罗拉·巴斯蒂尼(Karola Bastini)和票价getzin研究了将气候绘图目标整合到薪酬系统中的先决条件。温暖的问候鉴于这些发展以及记录可持续性信息的持续复杂性,控制着新的挑战。因此,本版的重点是关于公司中的生态可持续性和CO 2信息,尤其是在控制方面的程度,并考虑了消费者如何接受此信息。您对DAX 40公司的薪酬系统进行定性检查显示实用的设计选择。鉴于CSRD的引入,许多公司首次有义务报告,Thorsten Knauer,Sandra Winkelmann和Jennifer Zeidler分析了Aktuell公司管理方面的可持续性方面在一项经验研究中被考虑到了多大程度上。讨论了可持续性策略,在控制讲师中的整合,控制和组织方面的整合。由于对CO 2信息的考虑不仅对公司,Bianca Beyer,Rico Chaskel,Simone Euler,Joachim Gassen,Ann-KristinGroßkopf和Thorsten Sellhorn Reactions在用户方面。在现场实验中,解决了CO 2的相关测量和随后的通信中的挑战。最后,汤姆·古比尼(Tom Gubbini)和詹妮弗·泽德勒(Jennifer Zeidler)再次采取了公司的观点,并研究了CO 2信息在报告中的不同表示的效果。很明显,演示文稿的演示可能已经产生积极影响。一般部分始于ChristianDürholt,Thorsten Knauer和ArneVoßmann的贡献,他们在并购决策过程和整体方法中呈现了偏见的经验结果。Stefan Litzki和Nina Topp提供了对Materna整体公司控制的见解。最后,ThomasGünther和XeniaBörner使用经验分析来提供有关建议在业务分析工具上进行投资的信息。该手册是通过控制对话来解决的,我们与弗雷斯尼乌斯董事会成员迈克尔·摩泽尔(Michael Moser)提出了可持续性战略和转型的主题。祝您阅读和2025年健康的阅读和健康的一年!
S.No. 期刊名称 编辑 E-ISSN 出版商/出版社 主题 合集 标题 URL 1 国际技术转让软件工具期刊 Bernhard Steffen, John Hatc1433-2787 Springer Computer Science https://doi.org/10.1007/10009.1433-2787 2 人工智能与机器人 Hiroshi Tanaka 1614-7456 Springer Computer Science https://doi.org/10.1007/10015.1614-7456 3 生态系统 Monica G. Turner, Stephen R1435-0629 Springer Biomedical and Life Sciences https://doi.org/10.1007/10021.1435-0629 4 疝气 Volker Schumpelick, Giampi 1248-9204 Springer Medicine https://doi.org/10.1007/10029.1248-9204 5 国际文档分析与识别杂志 (IJDAR) Koichi Kise, Daniel Lopresti, 1433-2825 Springer 计算机科学 https://doi.org/10.1007/10032.1433-2825 6 中国机械工程学报 Tianhu Song 2192-8258 Springer Engineering https://link.springer.com/journal/10033 7 人工器官杂志 Shigeru Miyagawa, Yoshiki S1619-0904 Springer Medicine https://doi.org/10.1007/10047.1619-0904 8 神经遗传学 Georg Auburger, Manuel B. 1364-6753 Springer Medicine https://doi.org/10.1007/10048.1364-6753 9 欧洲物理杂志 A Nicolas Alamanos, David Bla1434-601XSpringer Physics and Astronomy https://doi.org/10.1007/10050.1434-601X 10 欧洲物理杂志 C Ignatios Antoniadis, Günthe 1434-6052 Springer Physics and Astronomy https://doi.org/10.1007/10052.1434-6052 11 欧洲物理杂志 D Almut Beige, Joachim Burgd1434-6079 Springer Physics and Astronomy https://doi.org/10.1007/10053.1434-6079 12 木材科学杂志 Yoshihisa Fujii, Yoshihisa Fuj1611-4663 Springer 生物医学和生命科学 https://doi.org/10.1007/10086.1611-4663 13 Calcolo Paola Favati、Michele Benzi 1126-5434 Springer 数学与统计学 https://doi.org/10.1007/10092.1126-5434 14 中欧运筹学杂志 Ulrike Leopold-Wildburger 1613-9178 Springer 商业与管理 https://doi.org/10.1007/10100.1613-9178 15 医学科学中的激光 Keyvan Nouri 1435-604XSpringer 医学 https://doi.org/10.1007/10103.1435-604X 16 认知、技术与工作Oliver Carsten, Frédéric Van 1435-5566 Springer 计算机科学 https://doi.org/10.1007/10111.1435-5566 17 胃癌 Yasuhiro Kodera, Giovanni d1436-3305 Springer Medicine https://doi.org/10.1007/10120.1436-3305 18 国际微生物学 José Berenguer 1618-1905 Springer 生物医学与生命科学 https://link.springer.com/journal/10123 19 急诊放射学 Ronald J. Zagoria 1438-1435 Springer Medicine https://doi.org/10.1007/10140.1438-1435 20 种群生态学 Takashi Noda 1438-390XSpringer生物医学和生命科学 https://doi.org/10.1007/10144.1438-390X 21 结直肠病学技术 Steven Brown, Giuseppe Ga 1128-045XSpringer Medicine https://doi.org/10.1007/10151.1128-045X 22 临床和实验肾脏病学 Hirokazu Okada, Shinya Kan 1437-7799 Springer Medicine https://doi.org/10.1007/10157.1437-7799 23 欧洲物理学杂志 E Fabrizio Croccolo, Giovanna 1292-895XSpringer 物理学和天文学 https://doi.org/10.1007/10189.1292-895X 24 头痛和疼痛杂志 Paolo Martelletti 1129-2377 Springer Medicine https://doi.org/10.1007/10194.1129-2377 25 骨科和创伤学杂志 Fabrizio Rivera, Marco d'Imp1590-9999 Springer Medicine https://doi.org/10.1007/10195.1590-9999 26 经济和金融决策 Salvatore Greco, Paolo Ghira1129-6569 Springer 经济和金融https://doi.org/10.1007/10203.1129-6569 27 国际信息安全杂志 Sokratis Katsikas、Dieter Gol 1615-5270 Springer 计算机科学 https://doi.org/10.1007/10207.1615-5270 28 计算数学基础 Teresa Krick、Hans Munthe- 1615-3383 Springer 数学与统计学 https://doi.org/10.1007/10208.1615-3383 29 矿井水与环境 Robert Kleinmann、Christian1616-1068 Springer 地球与环境科学 https://doi.org/10.1007/10230.1616-1068 30 机械生物学中的生物力学和建模 Gerhard A. Holzapfel, David 1617-7940 Springer Engineering https://doi.org/10.1007/10237.1617-7940 31 信息系统和电子商务管理 Jörg Becker, Jan vom Brocke1617-9854 Springer 商业与管理https://doi.org/10.1007/10257.1617-9854 32 统计方法与应用 Carla Rampichini, Tommaso 1613-981XSpringer 数学与统计学 https://doi.org/10.1007/10260.1613-981X 33 计算管理科学 Stein-Erik Fleten, Rüdiger Sc 1619-6988 施普林格商业与管理https://doi.org/10.1007/10287.1619-6988 34 4OR Yves Crama、Michel Grabisc 1614-2411 Springer 商业与管理 https://doi.org/10.1007/10288.1614-2411 35 世界经济学评论 Holger Görg、Katheryn Russ,1610-2886 Springer 经济与金融 https://doi.org/10.1007/10290.1610-2886 36 工业微生物学与生物技术杂志 Ramon Gonzalez 1476-5535 Springer 生物医学与生命科学 https://doi.org/10.1007/10295.1476-5535 37 亚欧杂志 Ulrich Volz、Wei Shen 1612-1031 Springer Social Sciences https://doi.org/10.1007/10308.1612-1031 38 Journal of General Plant Pathology Hideki TAKAHASHI, Yuki Ichi 1610-739XSpringer Biomedical and Life Sciences https://doi.org/10.1007/10327.1610-739X 39 Acta Mechanica Solida Sinica Tiejun Wang 1860-2134 Springer Engineering https://link.springer.com/journal/10338 40 Cognitive Processing Marta Olivetti Belardinelli 1612-4790 Springer Biomedical and Life Sciences https://doi.org/10.1007/10339.1612-4790 41 Landslides Kyoji Sassa 1612-5118 Springer Earth and Environmental Science https://doi.org/10.1007/10346.1612-5118 42 Journal of Public Health Joachim Kugler 1613-2238 Springer Medicine https://doi.org/10.1007/10389.1613-2238 43 Acta Mechanica Sinica Xiaojing Zheng, Xuesong Wu1614-3116 中国工程学会 https://doi.org/10.1007/10409.1614-3116 44 Annals of Surgical Oncology Kelly M.McMasters 1534-4681 Springer Medicine https://doi.org/10.1007/10434.1534-4681 45 Acta Applicandae Mathematicae Julien Berestycki, John King,1572-9036 Springer 数学与统计学 https://doi.org/10.1007/10440.1572-9036 46 Acta Biotheoretica FJA Jacobs 1572-8358 Springer Education https://doi.org/10.1007/10441.1572-8358 47 应用复合材料 Maria Kashtalyan 1573-4897 Springer 化学与材料科学 https://doi.org/10.1007/10443.1573-4897 48 计算数学进展 Alexander Barnett, Karsten 1572-9044 Springer 数学和统计学 https://doi.org/10.1007/10444.1572-9044 49 全球分析和几何年鉴 Ilka Agricola, Verena Bögele 1572-9060 Springer 数学和统计学 https://doi.org/10.1007/10455.1572-9060
可控液体离子氮碳共渗工艺(TENIFER ® 和 ARCOR ® )可替代电镀涂层 Dr. Joachim Boßlet Durferrit GmbH,德国曼海姆 Danilo Assad Ludewigs Durferrit do Brasil,巴西迪亚德马 众所周知,由于其工艺特性,如高质量水平的最佳再现性,离子液体中的氮碳共渗可为处理后的部件提供出色的耐磨性、点蚀、咬合、卡死和表面疲劳抗性。但是,防腐效果仍然中等。可以通过在氧化盐熔体中进行后热处理来解决此问题,在氮化层表面产生非常薄但致密的氧化层。结合抛光和浸渍,氧化部件可以具有光滑、美观的黑色表面,从而显著提高盐雾试验中长达 1000 小时的耐腐蚀性,而不会失去上述优点。本文讨论了应用受控液体离子氮碳共渗 (CLIN) 工艺(如 TENIFER ® 和 ARCOR ®)来取代镀铬、镀镍和镀锌等电镀层,因为它们具有出色的耐腐蚀性和耐磨性,并强调了使用它们的经济和环境优势。由于易于操作,不需要复杂的工厂设备。工艺时间相当短,允许灵活工作,而无需为工作负载建立更大的缓冲容量。1.简介 CLIN 是用于钢和铸铁氮碳共渗和氧化的现代环保工艺的家族名称。氮和碳的扩散会产生所谓的化合物层,该层具有非金属特性。与其他涂层相比,该边缘区域的突出优势在于,牢固的化合物扩散在基材上,而不是涂在表面上。因此,它们表现出非常好的附着力,裂纹敏感性明显降低。根据所用材料,这些层的硬度为 800 至 1500 维氏硬度。化合物层由下面的扩散层支撑。CLIN 处理的部件可提供卓越的防磨损、防卡死、防擦伤、防点蚀和防疲劳保护。2.工艺特点 基本上所有类型的铁材料都可以在盐熔体中进行氮碳共渗,无需任何特殊的初步预处理,例如工具钢、低碳钢、阀门钢、奥氏体钢、铸铁或烧结材料。工艺顺序并不复杂。处理温度通常为 570 - 590 °C。经过短暂的预清洁和在空气中预热至 350 - 400 °C 后,将部件在盐熔体中进行氮碳共渗,通常持续 60 - 120 分钟。在特殊情况下,可以使用较低 (480 °C) 或较高 (630 °C) 的温度。对于淬火,使用水、空气、氮气、真空或氧化冷却浴。随后,用热水级联清洁炉料。对于氮碳共渗熔体,仅需控制以下几个参数: • 熔体的化学成分 • 处理温度 • 处理时间 与其他处理介质相比,盐熔体具有极高的氮含量。浸入液体盐浴后,氮碳共渗过程立即开始。几分钟后,已经形成了一个紧凑的
由亥姆霍兹能源出版 亥姆霍兹能源办公室 卡尔斯鲁厄理工学院 Kaiserstraße 12 76131 Karlsruhe 电子邮件:helmholtzenergy@sts.kit.edu https://energy.helmholtz.de/ 请引用为:亥姆霍兹能源 (2024):亥姆霍兹能源转型路线图 (HETR)。卡尔斯鲁厄。 DOI:10.5445/IR/1000172546 项目负责人:Holger Hanselka,亥姆霍兹能源副总裁,任期至 2023 年 Bernd Rech,亥姆霍兹能源副总裁,任期 2023 年 主要作者(按字母顺序排列):Mark R. Bülow 1 、Andrey Litnovsky 2 、Andrea Meyn 3 、Robert Pitz-Paal 1 , Witold-Roger Poganietz 4 , Sebastian Ruck 4 , Dominik Soyk 3 , K. Gerald van den Boogaart 5 贡献作者(按字母顺序排列) : Heike Boos 3 , Roland Dittmeyer 4 , Helmut Ehrenberg 4 , Maximilian Fichtner 4 , Olivier Guillon 2 , Veit Hagenmeyer 4 , 帕特里克·约赫姆 1 , Thiemo Pesch 2 , Ralf Peters 2 , Rutger Schlatmann 6 , Sonja Simon 1 , Robert Stieglitz 4 , Roel van de Krol 6 致谢:我们感谢以下科学家的贡献(按字母顺序排列):Alejandro Abadías-Llamas 5 , Fatwa F. Abdi 6 , Syed Asif Ansar 1 , Armin Ardone 4 , 克里斯托夫·阿恩特 1 , 塔贝阿恩特 4 , 克里斯托弗·鲍尔 2 , 鲍凯宾 4 , 沃纳·鲍尔 4 , 丹·鲍尔 1 , 曼努埃尔·鲍曼 4 , 沃尔夫冈·贝尔 2 , 克里斯托夫·布拉贝克 2 , 乌尔特·布兰德-丹尼尔斯 1 , Seongsu Byeon 1 , 索尼娅·卡尔南 6 , 莫妮卡·卡尔森 2 , 伊西多拉切基奇-拉斯科维奇 2 , 迈克尔·齐佩雷克 2 , 曼努埃尔·达门 2 , 鲁迪格-A。 Eichel 2 , Ghada Elbez 4 , Ursel Fantz 7 , Dina Fattakhova-Rohlfing 2 , Egbert Figgemeier 2 , Kevin Förderer 4 , Stefan Fogel 5 , K. Andreas Friedrich 1 , Giovanni Frigo 4 , Axel Funke 4 , Siddhartha Garud 6 , Hans-Joachim Gehrmann 4 , Stefan Geißendörfer 1 , Hans C. Gils 1 , Valentin Goldberg 4 , Vaidehi Gosala 1 , Thomas Grube 2 , Martina Haase 4 , Uwe Hampel 5 , Benedikt Hanke 1 , Ante Hecimovic 7 , Heidi Heinrichs 2 , Peter Heller 1 , Wolfgang Hering 4 ,米凯拉·赫尔 1、马克·希勒4 , Tobias Hirsch 1 , Carsten Hoyer-Klick 1 , Judith Jäger 1 , Thorsten Jänisch 1 , Christian Jung 1 , Thomas Kadyk 2 , Olga Kasian 6 , Shaghayegh Kazemi Esfeh 1 , Peter Klement 1 , Christopher Kley 6 , Markus Köhler 1 , Thomas Kohl 4 , Manfred Kraut 4 , Ulrike Krewer 4 , Uwe G. Kühnapfel 4 , Felix Kullmann 2 , Arnulf Latz 4 , Thomas Leibfried 4 , Ingo Liere-Netheler 1 , Guido Link 4 , Jochen Linßen 2 , Yan Lu 6 , Kourosh Malek 2 , Florian Mathies 6 , Jörg马太斯 4 , 马修·梅尔 6 , Wided Medijroubi 1 , Wolfgang Meier 1 , Matthias Meier 2 , Norbert H. Menzler 2 , Wilhelm A. Meulenberg 2 , Nathalie Monnerie 1 , Dulce Morales Hernandez 6 , Michael Müller 2 , Martin Müller 2 , Alexander von Müller 7 , Gerd Mutschke 5 , Tobias Naegler 1 , Dimitry Naumenko 2 , Eugene T. Ndoh 1 , Klarissa Niedermeier 4 , Fabian Nitschke 4 , Mathias Noe 4 , Urbain Nzotcha 2 , Sadeeb S. Ottenburger 4 , Ulrich W. Paetzold 4 , Joachim Pasel 2 , Sara Perez-Martin 4 , 伊恩·M·彼得斯 2 , 彼得普法伊弗 4 、诺亚·普弗格勒特 2 、菲利普·N·普莱索 4 、迈克尔·波兹尼克 4 , 安里克·普拉茨-萨尔瓦多 4 , 帕特里克·普鲁斯特 2 , 德克·拉德洛夫 4 , 乌韦·劳 2 , 德克·雷瑟 2 , 马塞尔·里施 6 , 马丁·罗布 1 , 克里斯汀·罗施 4 , 菲利普·罗斯 4 , 卢卡斯·罗斯 1 , 雷姆齐·坎·萨姆松 2 , 伊娃·席尔 4 ,安德里亚·施赖伯 2 , 马库斯·舒伯特 5 , 弗兰克·舒尔特 1 , 托尔斯滕·施瓦茨 1 , 哈瓦尔·沙蒙 2 , 梅塔尔·施维罗 2 , 谢尔盖·索尔达托夫 4 , 迪特·斯塔普夫 4 , 帕纳吉奥蒂斯·斯塔索普洛斯 1 , 桑德拉·斯坦克 6 , 沃尔克·施特尔泽 4 , 彼得·斯特默曼 4 , 菲利克斯斯图特 4 , 克洛伊·西拉尼杜2 , Muhammad Tayyab 2 , André Thess 1 , Stefanie Troy 2 , Julia Ulrich 4 , Annelies Vandersickel 1 , Robert Vaßen 2 , Martin Vehse 1 , Stefan Vögele 2 , Thomas Vogt 1 , Simon Waczowicz 4 , André Weber 4 , Tom Weier 5 , Marcel Weil 4 , 阿方斯·魏森伯格 4 , 托马斯·韦策尔 4 , 凯·维格哈特 1 , 克里斯蒂娜·伍尔夫 2 , 安德烈·霍内克斯 2 , 佩特拉·扎普 2 , 马可·佐贝尔 1 , 斯特凡·祖夫特 1
;路易吉·卡恰普蒂;塞尔吉奥·卡拉特罗尼;本杰明·卡努埃尔;基娅拉·卡普里尼;安娜·卡拉梅特;劳伦蒂乌卡拉梅特;马泰奥·卡莱索;约翰·卡尔顿;马特奥·卡萨列戈;瓦西利斯·查曼达里斯;陈玉傲;玛丽亚·路易莎·基奥法洛;阿莱西娅·辛布里;乔纳森·科尔曼;弗洛林·卢西安·康斯坦丁;卡洛·R·孔塔尔迪;崔亚欧;埃莉莎·达罗斯;加文·戴维斯;埃丝特·德尔·皮诺·罗森多;克里斯蒂安·德普纳;安德烈·德列维安科;克劳迪娅·德·拉姆;阿尔伯特·德罗克;丹尼尔·德尔;法比奥·迪·庞波;戈兰·S·乔尔杰维奇;巴贝特·多布里希;彼得·多莫科斯;彼得·多南;迈克尔·多瑟;扬尼斯·德鲁加基斯;雅各布·邓宁安;阿利舍尔·杜斯帕耶夫;萨扬·伊索;约书亚·伊比;马克西姆·埃夫雷莫夫;托德·埃克洛夫;格德米纳斯·埃勒塔斯;约翰·埃利斯;大卫·埃文斯;帕维尔·法捷耶夫;马蒂亚·法尼;法里达·法西;马可·法托里;皮埃尔·费耶;丹尼尔·费莱亚;冯杰;亚历山大·弗里德里希;埃琳娜·福克斯;纳瑟尔·加鲁尔;高东风;苏珊·加德纳;巴里·加勒威;亚历山大·高格特;桑德拉·格拉赫;马蒂亚斯·格瑟曼;瓦莱丽·吉布森;恩诺·吉斯;吉安·F·朱迪斯;埃里克·P·格拉斯布伦纳;穆斯塔法·京多安;马丁·哈内尔特;蒂莫·哈库利宁;克莱门斯·哈默勒; Ekim T. Hanımeli;蒂芙尼·哈特;莱昂妮·霍金斯;奥雷利恩·希斯;杰瑞特·海斯;维多利亚·A·亨德森;斯文·赫尔曼;托马斯·M·赫德;贾森·M·霍根;博迪尔·霍尔斯特;迈克尔·霍林斯基;卡姆兰·侯赛因;格雷戈尔·詹森;彼得·耶格利奇;费多·耶莱兹科;迈克尔·卡根;马蒂·卡利奥科斯基;马克·卡塞维奇;亚历克斯·凯哈吉亚斯;伊娃·基利安;苏门·科利;贝恩德·康拉德;约阿希姆·科普;格奥尔吉·科尔纳科夫;蒂姆·科瓦奇;马库斯·克鲁兹克;穆克什·库马尔;普拉迪普·库马尔;克劳斯·拉默扎尔;格雷格·兰茨伯格;迈赫迪·朗格卢瓦;布莱尼·拉尼根;塞缪尔·勒鲁什;布鲁诺·莱昂内;克里斯托夫·勒庞西·拉菲特;马雷克·莱维奇;巴斯蒂安·莱考夫;阿里·莱泽克;卢卡斯·隆布里瑟; J.路易斯·洛佩兹·冈萨雷斯;埃利亚斯·洛佩兹·阿萨马尔;克里斯蒂安·洛佩斯·蒙哈拉兹;朱塞佩·加埃塔诺·卢西亚诺;马哈茂德;阿扎德·马勒内贾德;马库斯·克鲁兹克;雅克·马托;迪迪埃·马索内特;阿努帕姆·马宗达尔;克里斯托弗·麦凯布;马蒂亚斯·梅斯特;乔纳森菜单;朱塞佩·梅西尼奥;萨尔瓦多·米卡利齐奥;彼得·米林顿;米兰·米洛舍维奇;杰里迈亚·米切尔;马里奥·蒙特罗;加文·W·莫利;尤尔根·穆勒; Özgür E. Müstecapl ioğlu ;倪伟头 ;约翰内斯·诺勒;塞纳德·奥扎克;丹尼尔 KL 爱;亚西尔·奥马尔;朱莉娅·帕尔;肖恩·帕林;索拉布·潘迪;乔治·帕帕斯;维奈·帕里克;伊丽莎白·帕萨坦布;埃马努埃莱·佩鲁基;弗兰克·佩雷拉·多斯桑托斯;巴蒂斯特·皮斯特;伊戈尔·皮科夫斯基;阿波斯托洛斯·皮拉夫齐斯;罗伯特·普朗克特;罗莎·波贾尼;马可·普雷维德利;朱莉娅·普普蒂;维什努普里亚·普蒂亚·维蒂尔;约翰·昆比;约翰·拉菲尔斯基;苏吉特·拉詹德兰;恩斯特·M·拉塞尔;海法 雷杰布·斯法尔 ;塞尔日·雷诺;安德里亚·里查德;坦吉·罗津卡;阿尔伯特·鲁拉;扬·鲁道夫;迪伦·O·萨布尔斯基;玛丽安娜·S·萨夫罗诺娃;路易吉·圣玛丽亚;曼努埃尔·席林;弗拉基米尔·施科尔尼克;沃尔夫冈·P。施莱希;丹尼斯·施利珀特;乌尔里希·施奈德;弗洛里安·施雷克;克里斯蒂安·舒伯特;尼科·施韦森茨;阿列克谢·谢马金;奥尔加·塞尔吉延科;邵丽静;伊恩·希普西;拉吉夫·辛格;奥古斯托·斯梅尔齐;卡洛斯·F·索普尔塔;亚历山德罗·DAM·斯帕利奇;佩特鲁塔·斯特凡内斯库;尼古拉斯·斯特吉乌拉斯;扬尼克·斯特罗勒;克里斯蒂安·斯特鲁克曼;西尔维娅·坦廷多;亨利·斯罗塞尔;古列尔莫·M·蒂诺;乔纳森·廷斯利;奥维迪乌·廷塔雷努·米尔恰;金伯利·特卡尔切克;安德鲁. J.托利;文森扎·托纳托雷;亚历杭德罗·托雷斯-奥胡埃拉;菲利普·特罗伊特兰;安德里亚·特罗姆贝托尼;蔡玉岱;克里斯蒂安·乌弗雷希特;斯特凡·乌尔默;丹尼尔·瓦鲁克;维尔·瓦斯科宁;维罗尼卡·巴斯克斯-阿塞韦斯;尼古拉·V·维塔诺夫;克里斯蒂安·沃格特;沃尔夫·冯·克利青;安德拉斯·武基奇斯;莱因霍尔德·瓦尔泽;王金;尼尔斯·沃伯顿;亚历山大·韦伯-日期;安德烈·温兹劳斯基;迈克尔·维尔纳;贾森·威廉姆斯;帕特里克·温德帕辛格;彼得·沃尔夫;丽莎·沃尔纳;安德烈·雪雷布;穆罕默德·E·叶海亚;伊曼纽尔·赞布里尼·克鲁塞罗;穆斯林扎雷;詹明生;林周;朱尔·祖潘;埃里克·祖帕尼奇
三倍暴露:减少气候变化,蓝色增长和保护对沿海社区的负面影响David A. Gill 1 *,Jessica Blythe 2,Nathan Bennett 3,4,5,3,4,5,Louisa Evans 6,Louisa Evans 6,Katrina Brown 6,Katrina Brown 6,Kathel A. Turner 7,Turner A. Turner A.达令11,安东尼奥·迪·佛朗哥12,格雷厄姆·爱泼斯坦13,埃斯特拉迪瓦里14,15,诺拉J.灰色16,Georgina G. Gurney 17,Rebecca P. Horan 1,Stacy D. Jupiter 18,Jacqueline D. Lau 19,20,Natali Lazzari 10,21,22,Peni Lestari 23,Shauna L. Mahajan 24夏洛特·K·惠特尼(Charlotte K.1。杜克大学海洋实验室,尼古拉斯环境学校,杜克大学,北卡罗来纳州博福特,28516,美国2。加拿大安大略省圣凯瑟琳斯布罗克大学的环境可持续发展研究中心。3。加拿大温哥华的人民海洋倡议4。人民与海洋专业集团,环境,经济和社会政策委员会,国际自然保护联盟,瑞士腺体5.Equalsea Lab,圣地亚哥大学,西班牙6。地理,环境,科学和经济学院。埃克塞特大学,埃克塞特,英国7。 环境与可持续发展研究所,埃克塞特大学,佩林,英国8。 政治,安全和国际事务学院,国家综合沿海研究中心(UCF沿海),美国中部佛罗里达大学9。 滑铁卢,加拿大安大略省。 14。埃克塞特大学,埃克塞特,英国7。环境与可持续发展研究所,埃克塞特大学,佩林,英国8。 政治,安全和国际事务学院,国家综合沿海研究中心(UCF沿海),美国中部佛罗里达大学9。 滑铁卢,加拿大安大略省。 14。环境与可持续发展研究所,埃克塞特大学,佩林,英国8。政治,安全和国际事务学院,国家综合沿海研究中心(UCF沿海),美国中部佛罗里达大学9。 滑铁卢,加拿大安大略省。 14。政治,安全和国际事务学院,国家综合沿海研究中心(UCF沿海),美国中部佛罗里达大学9。滑铁卢,加拿大安大略省。14。维多利亚大学维多利亚大学环境研究学院,不列颠哥伦比亚省V8W 2Y2,加拿大10。国家科学研究中心,PSLUniversitéParis,Criobe,Cnrs-Ephe-Upvd,Maison del'Océan,195 Rue Saint-Jacques,75005 Paris,法国,法国11。 野生动物保护协会,海洋计划,布朗克斯纽约,10460,美国12。 Stazione Zoologica Anton Dohrn,西西里海洋中心综合海洋生态系 滑铁卢大学环境,资源与可持续发展学院。 生态部,莱布尼兹热带海洋研究中心(ZMT),德国不来梅15。 海洋生态学系,生物学和化学学院(FB2),不来梅大学,德国不来梅,16。 Guelph大学地理,环境与地理学系,加拿大N1G 2W1,17。 艺术,社会和教育学院,詹姆斯·库克大学,昆士兰州汤斯维尔4811,澳大利亚18。 野生动物保护协会,美拉尼西亚计划,萨瓦,斐济19。 澳大利亚研究委员会珊瑚礁研究中心,詹姆斯·库克大学,澳大利亚昆士兰州汤斯维尔,澳大利亚20。 Worldfish,Batu Maung,马来西亚21。 Vicerectorat de Recerca,巴塞罗那大学,西班牙,Gran,De Les Corts Catalanes,585,08007巴塞罗那西班牙22。 环境技术的跨研究(Cretus),圣地亚哥大学应用经济学系,15782 Santiago de Compostela,Coruña,西班牙Coruña,西班牙23。 野生动物保护协会,印度尼西亚计划,JL。 马拉巴尔1号11号,印度尼西亚16128 24。国家科学研究中心,PSLUniversitéParis,Criobe,Cnrs-Ephe-Upvd,Maison del'Océan,195 Rue Saint-Jacques,75005 Paris,法国,法国11。野生动物保护协会,海洋计划,布朗克斯纽约,10460,美国12。Stazione Zoologica Anton Dohrn,西西里海洋中心综合海洋生态系滑铁卢大学环境,资源与可持续发展学院。生态部,莱布尼兹热带海洋研究中心(ZMT),德国不来梅15。海洋生态学系,生物学和化学学院(FB2),不来梅大学,德国不来梅,16。Guelph大学地理,环境与地理学系,加拿大N1G 2W1,17。 艺术,社会和教育学院,詹姆斯·库克大学,昆士兰州汤斯维尔4811,澳大利亚18。 野生动物保护协会,美拉尼西亚计划,萨瓦,斐济19。 澳大利亚研究委员会珊瑚礁研究中心,詹姆斯·库克大学,澳大利亚昆士兰州汤斯维尔,澳大利亚20。 Worldfish,Batu Maung,马来西亚21。 Vicerectorat de Recerca,巴塞罗那大学,西班牙,Gran,De Les Corts Catalanes,585,08007巴塞罗那西班牙22。 环境技术的跨研究(Cretus),圣地亚哥大学应用经济学系,15782 Santiago de Compostela,Coruña,西班牙Coruña,西班牙23。 野生动物保护协会,印度尼西亚计划,JL。 马拉巴尔1号11号,印度尼西亚16128 24。Guelph大学地理,环境与地理学系,加拿大N1G 2W1,17。艺术,社会和教育学院,詹姆斯·库克大学,昆士兰州汤斯维尔4811,澳大利亚18。野生动物保护协会,美拉尼西亚计划,萨瓦,斐济19。澳大利亚研究委员会珊瑚礁研究中心,詹姆斯·库克大学,澳大利亚昆士兰州汤斯维尔,澳大利亚20。Worldfish,Batu Maung,马来西亚21。Vicerectorat de Recerca,巴塞罗那大学,西班牙,Gran,De Les Corts Catalanes,585,08007巴塞罗那西班牙22。环境技术的跨研究(Cretus),圣地亚哥大学应用经济学系,15782 Santiago de Compostela,Coruña,西班牙Coruña,西班牙23。野生动物保护协会,印度尼西亚计划,JL。马拉巴尔1号11号,印度尼西亚16128 24。全球科学,世界野生动物基金会,1250 24th St NW Washington D.C. 20037 USA 25。Talanoa Consulting,Suva,Fiji 26。Emmett环境与资源跨学科计划,斯坦福大学,473,Via Ortega,Y2E2 Suite 226,美国加利福尼亚州斯坦福大学27.海洋解决方案中心,斯坦福大学,473,Via Ortega,Y2E2 Suite 193,美国加利福尼亚州斯坦福大学,美国28。Charles Telfair Center,Charles Telfair校园,Moka,80829,毛里求斯29。 中央海岸土著资源联盟,坎贝尔河,不列颠哥伦比亚省,加拿大30。 巴斯克气候变化中心,巴斯克大学的科学校园,莱奥阿48940,西班牙毕尔巴鄂31. 野生动物保护协会,肯尼亚海洋计划,POB 99470,肯尼亚80107 *通讯作者:David.gill@duke.eduCharles Telfair Center,Charles Telfair校园,Moka,80829,毛里求斯29。中央海岸土著资源联盟,坎贝尔河,不列颠哥伦比亚省,加拿大30。巴斯克气候变化中心,巴斯克大学的科学校园,莱奥阿48940,西班牙毕尔巴鄂31.野生动物保护协会,肯尼亚海洋计划,POB 99470,肯尼亚80107 *通讯作者:David.gill@duke.edu野生动物保护协会,肯尼亚海洋计划,POB 99470,肯尼亚80107 *通讯作者:David.gill@duke.edu
J. Tolley;酷刑文森特;亚历杭德罗·托雷斯·奥古拉; Treutlein Philipp;安德里亚长号; Yu-dai Tsai; Uphrecht Christian; Stefan Ulmer;丹尼尔·瓦卢克(Daniel Valuch);村庄的巴斯科宁; Veronica-Accesses; Nicholay V. Vitanov; Vogt Christian;沃尔夫·冯·攀登; AndrásVukics; Reinhold Walser;金·王(Jin Wang);伍兹·沃伯顿(Woods Warburton);韦伯日期亚历山大;安德鲁·恩兹劳斯基(Andrew Wnzlawski);迈克尔·沃纳(Michael Werner);杰森·威廉姆斯;帕特里克·温德斯特(Patrick Windpassinger);彼得·沃尔夫;丽莎·沃纳(Lisa Woerner);安德鲁穆罕默德·雅希亚(Mohamed E. Yahia); Emmanuel Zembrini Cross;穆斯林·扎里(Moslem Zarei);明朗Zhan;林周; Jure Zupan; ErikZupanič