Jonathan E. Drill - 律师 ID:019911983 STICKEL, KOENIG, SULLIVAN & DRILL, LLC 571 Pompton Avenue Cedar Grove, New Jersey 07009 电话:(973) 239-8800 传真:(973) 239-0369 电子邮件:jdrill@sksdlaw.com 宣告原告律师 麦迪逊自治市
摘要 ◥ 在这个精准医疗时代,已经开发出许多针对常见肿瘤类型中高复发性突变的工作流程,让患有罕见疾病的患者几乎没有选择。在这里,我们实施了一种功能精准肿瘤学方法,利用全面的基因组分析与高通量药物筛选相结合,为患有粘液纤维肉瘤等罕见肿瘤类型的患者确定肿瘤特异性药物敏感性。从一位参加英格兰精准医学研究所 (EIPM) 项目的高级别粘液纤维肉瘤患者那里,我们建立了患者衍生的 3D 肉球和异种移植模型,用于功能测试。由于缺乏大量临床相似病例,因此对患者来源的细胞进行了高通量药物筛选,并与另外两种粘液纤维肉瘤系和一种良性成纤维细胞系进行了比较,以功能性地识别肿瘤特异性药物敏感性。
Saednia,Khadijeh,Tabbarah,Sami,Lagree,Andrew,Wu,Tina,Klein,Klein,Jonathan,Jonathan,Garcia,Garcia,Eduardo,Hall,Michael,Chow,Edward,Edward,Rakovitch,Rakovitch,Eileen,Eileen,Childs,Childs,Charmaine,Charmaine,Sadeghi-Naini,Ali,Ali和Tran,William(20202020)。使用监督的机器学习,定量热成像生物标志物可从乳房辐射疗法中检测急性皮肤毒性。国际放射肿瘤学杂志*生物学*物理学,106(5),1071-1083。[文章]
学者工程与技术杂志缩写关键标题:Sch J Eng Tech ISSN 2347-9523(印刷版)| ISSN 2321-435X(在线) 期刊主页:https://saspublishers.com 应用人工智能算法预测镰状细胞危机可能性 Essang Samuel Okon 1*、Kolawole Olamide Michael 1、Runyi Emmanuel Francis 2、Ante Jackson Efiong 3*、Ogar-Abang Micheal Obi 1、Auta Jonathan Timothy 4、Okon Paul Edet 5、Effiong Raphael Dominic 6、Ukim Akanimo Jimmy 5 1 尼日利亚阿克帕布约亚瑟贾维斯大学数学与计算机科学系 2 尼日利亚乌盖普联邦理工学院统计系 3 尼日利亚姆克帕塔克 Topfaith 大学数学系 4 尼日利亚阿布贾非洲科技大学纯数学与应用数学系 5 电气/电子学系Topfaith 大学,尼日利亚姆克帕塔克 6 卡拉巴尔大学数学系,尼日利亚卡拉巴尔 DOI:https://doi.org/10.36347/sjet.2024.v12i12.008 | 收到日期:2024 年 11 月 9 日 | 接受日期:2024 年 12 月 16 日 | 出版日期:2024 年 12 月 26 日 * 通讯作者:Essang Samuel Okon;Ante Jackson Efiong 亚瑟贾维斯大学数学与计算机科学系,尼日利亚阿克帕布约;Topfaith 大学数学系,尼日利亚姆克帕塔克
在Google上用于生产准备模型的汽车平台的研究和应用工程工作。设计了我们的团队使用的一种方法来选择参数,以降低10×的计算,以进行生产性能。引用了该方法的论文。此外,还指导高级工程师,以最佳的高参数优化方法和促进尖端方法。
摘要 有效评估癌症疼痛需要对构成疼痛体验的所有组成部分进行细致的分析。实施自动疼痛评估 (APA) 方法和计算分析方法,特别关注情感内容,可以促进对疼痛的彻底描述。所提出的方法转向使用语音记录中的自动情感识别以及我们之前开发的用于检查疼痛面部表情的模型。对于训练和验证,我们采用了 EMOVO 数据集,该数据集模拟了六种情绪状态(大六)。由多层感知器组成的神经网络在 181 个韵律特征上进行了训练以对情绪进行分类。为了进行测试,我们使用了从癌症患者收集的访谈数据集并选择了两个案例研究。使用 Eudico Linguistic Annotator (ELAN) 6.7 版进行语音注释和连续面部表情分析(得出疼痛/无痛分类)。情绪分析模型的准确率达到 84%,所有类别的精确度、召回率和 F1 分数指标都令人鼓舞。初步结果表明,人工智能 (AI) 策略可用于从视频记录中连续估计情绪状态,揭示主要的情绪状态,并提供证实相应疼痛评估的能力。尽管存在局限性,但提出的 AI 框架仍表现出整体和实时疼痛评估的潜力,为肿瘤环境中的个性化疼痛管理策略铺平了道路。临床试验注册:NCT04726228。
在过去两年中,人们对生成式人工智能产生了前所未有的兴奋,但人工智能遭到强烈反对的可能性正在上升。生成式人工智能的有效和公平使用的障碍清单越来越清晰:事实上不正确的结果、知识产权侵权、训练数据中的偏见和偏执、低质量的内容生成、对低薪数据标签劳动力的依赖、监控问题、隐私问题和安全问题(Apodaca,2024 年),以及不可持续的高成本和环境破坏。56% 的财富 500 强公司在最近的年度报告中将人工智能列为风险,远多于将人工智能列为关键机遇(Arize AI)。大多数 C 级高管表示,到目前为止,他们对生成式人工智能项目要么持矛盾态度,要么不满意(BCG)。新的 AI 产品和服务也面临消费者的抵制(Cicek 等人,2024 年),包括客户服务。现实世界任务的表现越来越多地接受实证检验,在某些情况下被发现存在不足。拟议的研究任务是探究所谓的生成 AI 的“炒作动态”(Dedehayir 和 Steinert,2016 年),特别是 IS 研究在新技术炒作动态中的作用。虽然“炒作周期”在业界众所周知,但这个五阶段的描述不够精确,无法提供理论见解,更不用说技术预测了。Dedehayir 和 Steinert 提出了一种“炒作动态”模型,其中中介机构塑造了生产者和用户之间的知识交流。在这个模型中,IS 学者就是这样一个中介,我们的“炒作”受到社会规范和制度实践的影响。我们想成为哪种中介?一个忽视我们自己对技术引发的变化的复杂性的发现,而倾向于技术新颖性和“颠覆”的人,只有在反弹来袭时才将我们的注意力转向下一个大事件?虽然人工智能的反弹和炒作本身就是一个值得讨论的话题,但更根本的问题是如何让我们的学术研究回归其适当的角色,即对数字创新产生的经济和社会价值(相对于其成本)进行中立评估。参考文献 Apodaca,T.(2024)。我如何尝试以新闻工程师的身份使用生成式人工智能——合乎道德。标记。摘自 https://themarkup.org/hello-world/2024/09/07/how-im-trying-to-use-generative-ai-as-a-journalism-engineer-ethically。
摘要 简介 本文介绍了一种混合方法研究方案,该方案将用于评估英国最近实施的实时集中式医院指挥中心。指挥中心代表复杂自适应系统中的复杂干预。它可以支持更好的运营决策,并有助于识别和减轻对患者安全的威胁。然而,对于这种复杂的健康信息技术对患者安全、可靠性和医疗保健运营效率的影响的研究有限,本研究旨在帮助解决这一差距。方法和分析 我们将进行纵向混合方法评估,并将由公众和患者的参与和参与提供信息。访谈和人种学观察将为定量分析的迭代提供信息,这将使进一步的定性工作更加敏感。定量工作将采用迭代方法,从文献和常规收集的电子健康记录数据集中务实地确定相关的结果测量。道德与传播 该协议已获得利兹大学工程与物理科学研究伦理委员会 (#MEEC 20- 016) 和国家卫生服务健康研究局 (IRAS No.: 285933) 的批准。我们的成果将通过国际期刊和会议上的同行评审出版物进行交流。作为与当地信托利益相关者合作工作的一部分,我们将提供持续的反馈。
人工智能 (AI) 与计算机一样古老,可以追溯到 1945 年的 ENIAC (电子数字积分计算机)。“人工智能之父”约翰·麦卡锡在 1956 年他召集的达特茅斯会议上对人工智能进行了定义,他指出“学习的每个方面或智能的任何其他特征原则上都可以得到如此精确的描述,以至于可以让机器对其进行模拟。” 1958 年,他专门为人工智能开发了 LISP 语言。20 世纪 60 年代、70 年代和 80 年代见证了专家系统和一些自然语言系统的发展。20 世纪 90 年代,机器学习得到了发展。21 世纪的特色是大数据;2010 年代和 2020 年代是神经网络。神经网络理论是在 20 世纪 40 年代发展起来的,第一个神经网络是在 20 世纪 50 年代、60 年代和 70 年代设计的。反向传播训练是在 20 世纪 80 年代发展起来的,循环神经网络和卷积神经网络是在 20 世纪 90 年代和 21 世纪发展起来的,而生成对抗神经网络是在 2014 年发展起来的。2017 年,Vaswani 等人 1 提出了一种新的网络架构 Transformer,它使用了注意力机制,省去了循环和卷积机制,所需的计算量大大减少。这被称为自注意力神经网络。它允许将语句的分析分成几个部分,然后并行分析它们。这是自神经网络诞生以来唯一真正重大的创新,因为它显著减少了推理和训练的计算负荷。神经网络的功能与人脑相同,使用大脑神经元、树突、轴突和突触的数学等价物。计算机和大脑都使用电信号,但神经脉冲是通过电化学方式传输的,这比计算机中的纯电流慢得多。轴突被髓鞘隔离,髓鞘可以大大加快传输速度,大量髓鞘化可以使速度提高 100 倍。2 GPT-3 系统中的人工智能神经网络在 2023 年就已经拥有爱因斯坦的智商,到现在可能已经是人类的 1000 倍。3 神经网络的心理层面在 1993 年由 K. Anders Ericsson 等人在一部被广泛称为“10,000 小时参考”的作品中描述。这适用于任何类型的技能——演奏乐器、做数学、参加体育比赛。当然,那些出类拔萃的人确实练习了很多,但更重要的是深度思考。爱立信并不了解其中的机制。2005 年,R. Douglas Fields 提出了