在靠近工厂土地边界的上层蓄水层地下水中,地表以下 55 至 130 英尺深处检测到了高浓度的硼。该成分可能已从 EEI 土地上移出,并且可能在工厂东部和东南部的地下水中发现或未发现高浓度的硼。
Crysta Draayer欢迎大家参加会议。Draayer女士解释说,顾问将为每个项目提供简短的演讲。DAC成员将对项目发表评论。然后,会议将向可能有疑问或评论的任何人开放。记录会议记录,还将发布给计划和分区的网站。后排桌子上有一个出勤表。如果给出了正确的电子邮件地址,则会通过电子邮件发送给您。JPG物业位于普拉斯基高速公路以北的Joppa Road东侧(美国40)。税收地图65;包裹174,批次107。第一选举区。理事会区计划号S197-2024构建了商用车和设备的一层建筑
Vistra 正在采取措施负责任地运营、淘汰和转型其伊利诺伊州遗留燃煤机组,使其成为该州新的零排放可再生能源经济的支柱。该公司已开始在普拉斯基县建造一座 405 兆瓦的普拉斯基太阳能发电厂。Vistra 将投资超过 6.5 亿美元建造该能源中心,这将是其迄今为止在全国最大的太阳能项目。Vistra 达成了一项长期商业购电协议,以支持普拉斯基太阳能的建设和运营。该公司预计该设施将于 2026 年投入使用。该设施由工会工人建造。这项投资预计将为工人创造 1.17 亿美元的收入,并在建设期间创造 1,330 个全职直接、间接和诱导就业岗位。新的能源中心距离公司退役的 EEI-Joppa 发电厂仅几英里。它将通过一条即将建造的约 8 英里长的输电线路连接到 Joppa 站点的电网。该项目已获得伊利诺伊州商务与经济机会部颁发的“高影响力商业公用事业规模太阳能设施”称号。当该设施退役时,它将以负责任的方式退役,公司将把该财产归还给土地所有者,使其可以再用于农业。
Vistra 正在采取措施负责任地运营、淘汰和转型其伊利诺伊州遗留燃煤机组,使其成为该州新的零排放可再生能源经济的支柱。该公司已开始在普拉斯基县建造一座 405 兆瓦的普拉斯基太阳能发电厂。Vistra 将投资超过 6.5 亿美元建造该能源中心,这将是其迄今为止在全国最大的太阳能项目。Vistra 达成了一项长期商业购电协议,以支持普拉斯基太阳能的建设和运营。该公司预计该设施将于 2026 年投入使用。该设施由工会工人建造。这项投资预计将为工人创造 1.17 亿美元的收入,并在建设期间创造 1,330 个全职直接、间接和诱导就业岗位。新的能源中心距离公司退役的 EEI-Joppa 发电厂仅几英里。它将通过一条即将建造的约 8 英里长的输电线路连接到 Joppa 站点的电网。该项目已获得伊利诺伊州商务与经济机会部颁发的“高影响力商业公用事业规模太阳能设施”称号。当该设施退役时,它将以负责任的方式退役,公司将把该财产归还给土地所有者,使其可以再用于农业。
全球各国政府都希望通过相对抽象的目标,在减少排放的同时,尽可能减少对经济和选民基础的干扰,如 2050 年实现净零排放 (Government of Canada, 2020a)。然而,如果没有技术变革或产业重组,全球经济将需要萎缩 42%,才能保持在建议的 1.5°C 变暖目标以下 (Freitag et al., 2021)。全球基础设施严重依赖化石燃料来获取能源(最大的温室气体 (GHG) 排放部门)和商品生产 (Ritchie & Roser, 2020)。因此,工业界和政府都渴望通过新技术“颠覆性创新”摆脱气候变化,从而避免昂贵的工业改革 (Wilson & Tyfield, 2018)。人工智能 (AI) 是预防灾难性气候变化影响最常被提及的技术。目前,政府和行业可以在任何领域部署人工智能技术,预计到 2030 年,人工智能创新将使温室气体排放量减少 1.5-4%(Joppa & Herweijer,2019 年)。然而,这些减排量远不足以避免气候灾难。它们被同一信息通信技术 (ICT) 部门产生的排放进一步抵消,目前该部门的排放量占全球排放量的 2.1-3.9%(Freitag 等人,2021 年)。虽然人工智能优化可以减少能源和材料消耗,但政府、行业和公民应该在资源需求和道德影响的背景下考虑这些优化。
作者感谢:Anna Stratton 的杰出投入、研究协助和支持,她对本手册的编写起到了至关重要的作用; Annie Petsonk、Ruben Lubowski、Fred Krupp、Julia Fidler、Elizabeth Willmott、Lucas Joppa、Thomas Roetger、Kristin Qui、Oleg Lugovoy、Elena Schmidt、Christine Seifert、Jan Seven、Martin Lange、Mark Brownstein、Beth Trask、Suzi Kerr、Nat Keohane、John Schmitz、Martina Simpkins、Amy Malaki、Jan Mazurek、Nikki Roy、Christa Owens Michelet、Andrei Mungiu、Tim Johnson、Carlos Calvo Ambel、Pietro Caloprisco、James Beard、John Holler、Nikita Pavlenko、Arianna Baldo、Sylvie Banoun、Pierre Caussade、Claire Rais-Assa、Jonathan Gilad 和 Inmaculada Gómez Jiménez 的投入、领导、支持和/或启发;国际可持续航空联盟(ICSA)、联合国国际民航组织航空环境保护委员会秘书处以及国际民航组织成员国和观察员的成员帮助形成了本手册的思想,并为国际民航组织 CORSIA SAF 框架做出了不懈的努力,以促进在环境和社会诚信的基础上实现航空脱碳;感谢 Christa Ogata 和 Sommer Yesenofski 的文字编辑;感谢气候工作基金会、突破能源和 CLIMA 基金会(Medio Ambiente 实验室)对这项工作的慷慨支持。
实施了各种保护措施,最终目标都是利用有限的保护资金最大限度地保持生物多样性。然而,对保护区位置的分析表明,即使是系统性方法也容易受到“残留”偏差的影响,高纬度、土壤质量差和经济价值低的地区会受到不成比例的高水平保护,而特别容易受到开发的高质量地区却没有得到充分保护(Devillers 等人,2015 年;Joppa 和 Pfaff,2009 年)。系统方法中残留偏差的出现主要归因于两个因素:未能根据影响制定保护目标和目的(Pressey 等人,2017 年;Pressey、Visconti 和 Ferraro,2015 年),以及难以通过实证测量保护影响来指导制定保护规划的优先事项(Bottrill 和 Pressey,2012 年;Ferraro 和 Pattanayak,2006 年;Ferraro 和 Pressey,2015 年;McIntosh 等人,2018 年;McIntosh、Pressey、Lloyd、Smith 和 Grenyer,2017 年)。只有通过比较干预的结果和不干预的结果(在保护文献中称为“反事实”结果,sensu Ferraro,2009 年),才能衡量保护影响。然而,其他科学领域中严格的实验程序标准,包括控制组(即反事实组)和处理组,在保护科学中并不切实际,因为它们需要在许多重复区域实施多种替代保护优先策略,并且要持续与保护相关的时间段(即几十年)。这也是一种有伦理问题的过程,因为反事实规划区域在可能迫切需要保护干预措施时,不会得到任何保护干预措施(或已知非最优的干预措施)。保护从业者使用各种工具,包括实施保护区(PA)、监管对生物多样性的威胁(例如土地清理限制)以及管理生物多样性(例如入侵物种控制)等。在本文中,我们重点介绍 PA 的使用,它是系统保护规划中最广泛采用的工具之一(Margules & Pressey,2000)。如今,保护规划的主要方法是设计一个互补且具有代表性的保护区网络,这通常涉及为规划区域内每个感兴趣的生物多样性特征设定一个特定目标(例如,总面积或比例面积)(Kukkala & Moilanen,2013 年)。其他方法侧重于设计保护区网络,这些网络也或可选择地侧重于其他属性,例如最大化保护区之间的连通性(Beger 等人,2010 年),或最小化保护成本(Naidoo 等人,2006 年)。代表性目标在保护政策和实践中广泛存在,通常是国家和跨国储备体系的主要目标,由
农业历史可以看作是一系列关键事件,例如新石器时代的革命,农业后农业扩展到新地区,新农作物的次要家属,丝绸之路上的运动,哥伦比亚交易所,工业革命,绿色革命,甚至是最近,正在进行的基因组旋转。这些都有积极的好处,但它们也有成本,包括农业生物多样性。据估计,在地球上有300,000至500,000种较高的植物,其中大约369,000种已被鉴定或描述(Willis,2017年)。许多物种仍然是科学不知道的,而三分之一也有灭绝的风险(Pimm和Joppa,2015年)。据估计,农业前的人类社会用食物用食物的植物数量约为7,000,但只有一小部分植物王国被驯化了。我们目前对驯化植物的知识在很大程度上反映了我们对适合最近全新世环境的相对较少的活着的驯养人的经验。农作物驯化的过程是基于人类培养实践和农业环境所驱动的选择。大约有2500种经历了一定程度的驯化,而250种被认为是完全驯化的,因为它们的完整生命周期依赖于人类的培养(Meyer等人,2012; Gaut等,2018; Smy smysmýKal等,2018)。人类依靠一小部分农作物植物,例如玉米,大米,小麦,大豆和马铃薯,构成了我们大部分饮食摄入量。总的来说,约有10至50种植物物种共同提供了全球热量摄入量的约95%。对大多数食物的几种物种的关注是世界粮食供应气候变化和主要新植物疾病爆发的脆弱性的关键要素。作物野生亲戚(CWRS)仍然是作物改善的遗传多样性的最大储藏物,并已用于主要的基因疾病和耐药性,以及非生物胁迫的耐受性(Vavilov等,1992; Hajjar and Hodgkin,Hodgkin,2007; Warschefsky et al。等人,2018年; Coyne等,2020)。但是,来自各个植物科和属的大量植物物种具有有利的特征,但到目前为止尚未被驯化。由于我们一直在获得有关驯化过程的基因组和生物学背景的知识,因此我们可以应用更有效的选择来驯化更多的野生物种。由于许多野生分类单元在当地适应了特定的栖息地并包含了重要的遗传多样性,因此随着我们面对气候变化,这可能会产生新颖的农作物,并帮助我们实现更环保的可持续农业。并非所有有关新教育的候选者都是CWR,尽管许多人甚至最多的人都会是CWR,因为相关农作物物种的形式/功能提供了一个有用的模板来指导CWR的新杂志。另一方面,用于渗入作物物种的所有有用基因的野生源都是