所研究的设备包含平面JJS,由厚度为70 nm的NB膜制成。该胶片是通过在氧化的Si晶片上在室温下在室温下溅射沉积的。首先通过光刻和活性离子蚀刻将薄膜构成约6 µm宽的桥梁,然后由Ga+聚焦离子束(FIB)FEI NOVA 200。JJS具有可变的厚度桥结构。它们是通过通过fib在NB层中切一个狭窄的凹槽而制成的。单线切割,名义宽度为零,在10 pA和30/10 kV加速电压下进行。蚀刻时间是自动限制的。“长” JJ2是使用30 kV梁制成的,其斑点尺寸约为7 nm,而“短” JJ1是用10 kV fib制成的,其斑点大小约为两倍。由于NB的重新沉积,FIB切割的深度在纵横比(深度/宽度)〜2处是自限制(请参阅参考文献中的讨论[1])。结果,JJ1既比JJ2更宽又深,如图3(a),导致临界电流的相应差异。
超导性为新一代的电子设备提供了潜力,这些电子设备的特征是最小或零分解和快速响应时间[1]。在这一有希望的景观中,被称为“超导二极管效应”的超导系统中的非肾脏现象在最近引起了极大的关注[2-69],有关最近的评论,请参见参考文献。[70]。在这些系统中,两个方向上的关键电流不同,| i + c | ̸= | i -c | 。这种超导二极管的传统功能是二极管的效率,由η= |降低。 (i + c + i -c) /(i + c - i -c)| 。这标准量化了临界电流中的不对称性,这是二极管功能的关键方面。因此,最大化η是超导二极管潜在应用的重要方面。理想二极管(η=±1)的特征是仅在一个方向上支持超电流。到目前为止,已经探索了不同的方向以接近统一效率,包括应用小偏置电压后的多个dreev反射[55],并平行地连接了几个连接[19,64]和三个末端超导性设备(Triodes)[46]。最近,基于垂直于超流式传播的电场的应用,提出了一个理想二极管的提议[71]。
9程序9 9.1准备和清理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 9.2提出点。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 9.3从探针中卸下连接组件。。。。。。。。。。。。。。。。。。。。。。。。。。。10 9.4在组件中安装一个点。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 9.5检查是否适当的电连续性。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 9.6在点和基数之间进行接触。。。。。。。。。。。。。。。。。。。。。。。。。。。14 9.7将探针连接到I -V曲线电子设备。。。。。。。。。。。。。。。。。。。。。。。。。。14 9.8在将探针插入低温恒温器之前。。。。。。。。。。。。。。。。。。。。。。。。。。。15 9.9观察直流效应。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 9.10观察效果。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>17 9.11校准。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18 div>
贸易/设备名称:Concha Sol 助听器 (CL-1001) 法规编号:21 CFR 874.3325 法规名称:自适应气导助听器 监管类别:II 类 产品代码:QUH 日期:2024 年 2 月 12 日 收到日期:2024 年 2 月 12 日 亲爱的 Joseph Burke: 我们已审查了您根据第 510(k) 节提交的上市前通知,该通知表明您有意销售上述设备,并已确定该设备与 1976 年 5 月 28 日(医疗器械修正案颁布日期)之前在州际贸易中合法销售的同类设备或已根据《联邦食品、药品和化妆品法案》(该法案)的规定重新分类的设备基本等同,且无需获得上市前批准申请 (PMA) 批准。因此,您可以根据该法案的一般控制条款营销该器械。尽管这封信将您的产品称为器械,但请注意,一些已获准上市的产品可能是组合产品。510(k) 上市前通知数据库(网址为 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm)可识别组合产品提交。该法案的一般控制条款包括年度注册、器械清单、良好生产规范、标签要求以及禁止贴错标签和掺假。请注意:CDRH 不评估与合同责任担保相关的信息。但我们提醒您,器械标签必须真实,不得误导。如果您的器械被归类(见上文)为 II 类(特殊管制)或 III 类(PMA),则可能会受到额外管制。现行影响您设备的重大法规可在《联邦法规》第 21 章第 800 至 898 部分中找到。此外,FDA 可能会在《联邦公报》上发布有关您设备的进一步公告。有关可能需要新的上市前通知的变更的更多信息,请参阅 FDA 指导文件《决定何时提交 510(k) 以更改现有设备》( https://www.fda.gov/media/99812/download ) 和《决定何时提交 510(k) 以更改现有设备》( https://www.fda.gov/media/99785/download )。
Machado-Joseph疾病(MJD)是一种毁灭性且无法治愈的神经退行性疾病,其特征是进行性共济失调,难以说话和吞咽。因此,受影响的个体最终成为轮椅依赖,需要持续的护理,并面临预期寿命缩短。MJD的单基因原因是ATXN3基因内的三链肽(CAG)重复区域的膨胀,这导致产生的ataxin-3蛋白内聚谷氨酰胺(PolyQ)膨胀。虽然可以很好地确定ataxin-3蛋白作为去泛素化(DUB)酶的作用,因此与蛋白质抗体有关,但仍然存在有关polyq膨胀在ataxin-3对其DUB功能的影响的问题。在这里,我们回顾了当前的Ataxin-3的DUB功能,其DUB目标以及PolyQ扩展对Ataxin-3的DUB功能的影响的知识。我们还考虑了ataxin-3的配音功能的潜在神经保护作用,以及亚Xaxin-3作为基因转录的配音酶和调节剂的相交。ataxin-3是MJD中的主要致病蛋白,似乎也参与了癌症。由于异常去泛素化与神经变性和癌症既有联系,因此对Ataxin-3的DUB功能的全面理解对于在这些复杂条件下阐明潜在的治疗靶标很重要。在这篇综述中,我们旨在将Ataxin-3的知识巩固为DUB和揭幕区域,以进行未来的研究,以帮助对Ataxin-3的DUB功能进行治疗,以治疗MJD和其他疾病。
设计并制作了一种基于电流偏置约瑟夫森结 (CBJJ) 阈值行为的约瑟夫森辐射阈值探测器 (JRTD),用于低温红外辐射 (IR@1550nm) 检测。为了实现最佳性能,我们开发了一种二元假设检测方法来校准无辐射和有辐射时的约瑟夫森阈值行为(即 CBJJ 与 Al/AlO x /Al 结的开关电流分布)。在没有红外辐射的情况下,结点转变,结点两端的电压降可测量,该信号被视为假设 H 0 的事件。在有红外辐射的情况下观察到的结点转变事件作为假设 H 1 。考虑到通常的高斯噪声并基于统计决策理论,对测得的开关电流分布的累积数据进行处理,并估算了所演示的 JRTD 设备的阈值灵敏度。所提出的探测器的最小可探测红外辐射功率约为 0.74 pW,这对应于 5.692 × 10 6 光子/秒的光子速率。进一步优化 JRTD 以实现所需的单光子二元检测仍然是一个争论的主题,至少在理论上是如此。
t乔治·詹姆斯(George James),萨吉·约瑟夫(Saji Joseph),文森特·马修(Vincent Mathew)电子和光子设备和系统新兴趋势国际会议,Electro-2009,卷,2009年,第151-154页
该战略计划的目的是概述卫生部门的目标,计划和计划,以创建更健康的圣约瑟夫县。圣约瑟夫县卫生部(SJCDOH)致力于开会并超越我们的核心公共卫生服务,并将越来越重视基于证据的编程和数据收集,以推动实施未来的健康计划。在接下来的四年中,SJCDOH还将采取新颖的措施来改善婴儿的儿童健康,减少与肥胖相关的慢性疾病的影响,并满足我们社区中心理健康需求。SJCDOH投资用于加强其在社区中的存在,并为可靠的,基于证据的信息提供中立的空间,以促进,保护和保护所有居住和访问圣约瑟夫县的人的健康生活。
我们考虑在外部磁场下与旋转轨道耦合的相位偏置的约瑟夫森连接,并研究了在Majorana结合状态的存在下Josephson二极管效应的出现。我们表明,具有沿旋转轨道轴具有Zeeman场的中间区域的连接形成了低能量的Andreev频谱,与超导相位差异φ=π相对于超导相位差不对称,这在拓扑相中受到Majorana Bound态在拓扑相的强烈影响。这种不对称的Andreev频谱产生了异常的电流曲线和临界电流,这些曲线和临界电流在正和负超潮流中不同,因此信号表明了约瑟夫森二极管效应的出现。即使在微不足道的阶段也存在这种效果,但由于主要结合状态的空间非局部性,它在拓扑阶段得到了增强。因此,我们的论文建立了拓扑超导的利用来增强约瑟夫森二极管的功能。
摘要随着半导体设备的大小减小,结构和材料变得越来越复杂,因此制造这些设备变得越来越困难。IC研发(R&D)的复杂性和大容量制造(HVM)的规模大大增加了达到最终产量所需的成本和时间。芯片制造商,设备制造商和软件公司正在广泛的应用程序中探索和部署机器学习(ML)技术,包括流程开发,生产维护,计量和收益率改善,以解决这些扩展问题。拥有十多年的专业知识为半导体制造部署ML技术,LAM Research已开发了多种智能工具和ML解决方案,以优化半导体制造中的质量,效率以及生产力以及加速创新。在本文中,LAM的两个智能工具 - Semulator3D®和设备智能®DATAANALYZER(EI-DA) - 介绍了用于演示在R&D和HVM期间如何使用LAM的先进技术来有效地生产最先进的微芯片。