原告Appellee,v。t oni M. G Anzel,卫生事务临时执行院长,路易斯维尔大学医学院的院长,她的官方和个人能力; K Imberly A.b oland,路易斯维尔大学儿科临时主席,她的官方和个人身份; C Harles R. W Oods是路易斯维尔大学儿科前主席,他的个人身份; J Ennifer F. L e,前临时精神病学和心理学司的前临时部门,以及路易斯维尔大学儿童和青少年精神病学和心理学的现任负责人,其正式和个人能力; Bryan D. C Arter,前临时部门的儿童和青少年精神病学和心理学系联合主持,以及路易斯维尔大学心理学系负责人,他的正式和个人能力; William D. L Ohr,前路易斯维尔大学儿童和青少年精神病学和心理学系的前临时司共同主持,他的正式和个人能力,
纳米技术使得可以创建可用于研究大分子或生物纳米颗粒(MM或BNP)的电子特性和电子结构的纳米级结构[1-3]。在单分子电子[4]中,提议使用约瑟夫森连接(JJ)[5-7]研究小有机分子的电子性质,以及用于AndreENS的不同版本的Andreev SpectRoscopicy和Molecular Electronics方法和设备。这项工作的目的是显示基于MM或BNP的不体屏障JJ中约瑟夫森E ff Ect的可能性。为此,我们建议使用所研究的MM或BNP的特殊超导纳米级设备。在这种情况下,较大的大小由MM的2-2000 nm确定。尽管如此,如果超导体中的库珀对的相干长度和MMS或BNP的大小具有相同的数量级,则可能会发生约瑟夫森E ff ECT。实现约瑟夫森E ff ect,让我们测量电物理参数
与谐振子势不同,洗衣板势的能量空间并不相等。这是该系统的一个重要特性,使其成为量子比特的候选者,这一点后面会讨论。图 4 显示了我计算中的势和 4 个最低状态的特征函数。特征函数看起来与谐振子势的特征函数相似。但是,我们可以看到,在状态 2 和状态 3 的函数右边缘,函数不再为零。事实上,由于阱的右势垒不是无限高的(实际上在这种情况下非常低),所以每个状态都必须有一个传输速率(或量子隧穿速率)。从函数草图中,我们可以粗略地看出,状态 2 和 3 的隧穿速率比状态 0 和 1 的隧穿速率大得多。实际上,这种隧穿速率的差异是我们设计具有约瑟夫森结的量子比特的另一个基础。在下一节中,我将计算每个状态的隧穿速率,并解释如何通过量子隧穿来测量这种量子比特的状态。
大规模量子计算的最有前途的方法之一使用了基于许多约瑟夫森连接的设备。,即使在今天,有关单个连接点的开放问题仍然尚未解决,例如对量子相变的详细理解,约瑟夫森连接到环境的耦合或如何改善超导量子的相干性。在这里,我们设计并建立了连接到约瑟夫森连接处的芯片储层的设计和建造,该芯片连接起了一个有效的钢计,用于检测在非均衡性下,即有偏见的条件下的约瑟夫森辐射。验证仪转换A.C. Josephson电流在微波频率下,高达约100 GHz的温度升高,该温度升高。温度法。基于现实参数值的电路模型同时捕获当前 - 电压特性和测量功率。本实验证明了微波光子的有效,宽,热检测方案,并提供了超出标准电导测量值之外的约瑟夫森动力学的敏感检测器。
Quasiperiodicity最近提出了增强超导性及其接近效应。同时,在制造准碘结构(包括降低的尺寸)方面已经有显着的实验进步。以这些发展的启发,我们使用微观的紧密结合理论通过弹道纤维纤维链链附着于两个超导导线来研究DC Josephson效应。斐波那契链是准晶体中最知名的示例之一,具有丰富的多型频谱,其中包含具有不同绕组数字的拓扑间隙。我们研究了Andreev结合的状态(ABS),电流相关关系和临界电流如何取决于从短到长连接的准二体自由度。虽然电流相关关系显示传统的2π弦或锯齿状示例,但我们发现ABS会产生准二旋转振荡,并且质量改变了Andreev的反射,从而导致准二氧化型振荡,从而导致对接口长度的关键电流中的准静脉振荡。令人惊讶的是,尽管与晶体连接相比,较早提出了准二氧化性增强超导性的提议,但通常,我们并没有发现它会增强临界电流。但是,由于修改了Andreevev的反射,我们发现了降低界面透明度的显着电流增强。此外,通过改变化学电位,例如,通过施加的栅极电压,我们发现了超导体正常金属 - 螺旋体(SNS)和超导体 - 导管器 - 绝缘体 - 抑制剂 - perppercconductor(SIS)行为之间的分形振荡。最后,我们表明,子段状态的绕组导致临界电流中的等效绕组,因此可以确定绕组数,从而确定拓扑不变性。
在超导量子电路(例如量子位)中,信息以微波量子信号的形式处理和传输。在量子信息协议结束时,这些信号必须由室温电子设备记录。由于微波量子信号通常由很少的光子组成,因此必须放大它们才能达到合理的信噪比。因此,量子信号的低噪声放大至关重要。现代的低噪声mi-crowave放大器是建立在超导Josephson参数设备的基础上的,例如频率驱动的Josephson参数放大器(JPA),允许达到放大器的标准量子限制,甚至超越了它。当前的JPA是由超导量子干扰装置(Squid)与超导Coplanar波导谐振器相结合的。组合系统充当可调的非线性微波谐振器,其频率可以通过外部磁场在原位变化。机械类似物将是可变长度的摆,可以调整其本征频率。可以将非线性微波谐振器的可调节性通过在谐振频率的两倍的两倍上施加到参数上泵送JPA。这又可以导致出现在JPA处的弱量子信号的强大参数扩增。可以进一步利用相同的参数放大机制,以以挤压真空状态的形式生成真正的量子信号。在这种实践培训中,学生的使命是通过通过频道驱动的超导JPA进行实验研究量子量子限制的放大现象。This goal can be split in several parts: (i) analyze the magnetic field dependence of the JPA's resonance frequency via microwave transmission measurements with a Vec- tor Network Analyzer (VNA) and determine the JPA frequency modulation period in terms of the magnetic coil current, (ii) find a suitable working point for parametric amplification and record the corresponding resonance response, (iii) apply a microwave pump signal以适当的频率获得并测量实质性参数扩增的增益。
结合非线性设备(如约瑟夫森结)的超导微波电路是新兴量子技术的主要平台。电路复杂性的增加进一步需要有效的方法来计算和优化多模分布式量子电路中的频谱、非线性相互作用和耗散。在这里,我们提出了一种基于电磁模式下耗散或非线性元件的能量参与比 (EPR) 的方法。EPR 是一个介于 0 和 1 之间的数字,它量化了每个元件中存储的模式能量。EPR 遵循通用约束,并根据一个电磁本征模式模拟计算得出。它们直接导致系统量子汉密尔顿和耗散参数。该方法提供了一种直观且易于使用的工具来量化多结电路。我们在各种约瑟夫森电路上对这种方法进行了实验测试,并在十几个样本中证明了非线性耦合和模态汉密尔顿参数在几个百分比内的一致性,能量跨越五个数量级。
设计并制作了一种基于电流偏置约瑟夫森结 (CBJJ) 阈值行为的约瑟夫森辐射阈值探测器 (JRTD),用于低温红外辐射 (IR@1550nm) 检测。为了实现最佳性能,我们开发了一种二元假设检测方法来校准无辐射和有辐射时的约瑟夫森阈值行为(即 CBJJ 与 Al/AlO x /Al 结的开关电流分布)。在没有红外辐射的情况下,结点转变,结点两端的电压降可测量,该信号被视为假设 H 0 的事件。在有红外辐射的情况下观察到的结点转变事件作为假设 H 1 。考虑到通常的高斯噪声并基于统计决策理论,对测得的开关电流分布的累积数据进行处理,并估算了所演示的 JRTD 设备的阈值灵敏度。所提出的探测器的最小可探测红外辐射功率约为 0.74 pW,这对应于 5.692 × 10 6 光子/秒的光子速率。进一步优化 JRTD 以实现所需的单光子二元检测仍然是一个争论的主题,至少在理论上是如此。
本书包含从真实且备受推崇的来源获得的信息。已经努力发布可靠的数据和信息,但作者和出版商不能对所有材料的有效性或使用后果承担责任。作者和出版商试图追踪本出版物中复制的所有材料的版权持有人,如果尚未获得此形式出版的许可,则向版权持有人道歉。如果尚未确认任何版权材料,请写信并告诉我们,以便我们将来在任何重印版中纠正。
我们研究由非热相差的超导体形成的非热约瑟夫森连接,这在非热性下是有限的,这自然是由于与正常储层的耦合所致。取决于非热性的结构,以智障的自我能量捕获,低能频谱寄主在拓扑上稳定的异常点,即在零或有限的真实能量作为超导相位差的函数。有趣的是,相应的相位偏置的超级流可以在此类特殊点上获取发散的纤维。此实例是一种自然而独特的非热效应,它标志着一种可能增强约瑟夫森连接的敏感性的可能方法。我们的作品为实现独特的非温和现象而开辟了一种方法,这是由于非热门拓扑与约瑟夫森效应之间的相互作用所致。