我们提出了一种针对受保护或敏感因素实施 AI 公平性的新方法。该方法使用双重策略执行训练和表示改变 (TARA) 来缓解 AI 偏见的主要原因,包括:a) 通过对抗独立性使用表示学习改变来抑制数据表示对受保护因素的偏见依赖性;以及 b) 通过智能增强改变训练集以解决引起偏见的数据不平衡,通过使用生成模型,允许通过领域适应和潜在空间操纵对与代表性不足的人群相关的敏感因素进行精细控制。在图像分析上测试我们的方法时,实验表明 TARA 显著或完全消除了基线模型的偏差,同时优于具有相同信息量的其他竞争性消除偏差方法,例如,对于 Eye-PACS,(% 总体准确度,% 准确度差距) = (78.8, 0.5) vs. 基线方法的得分 (71.8, 10.5),对于 CelebA,(73.7, 11.8) vs. (69.1, 21.7)。此外,认识到当前用于评估消除偏差性能的指标的某些局限性,我们提出了新颖的联合消除偏差指标。我们的实验还证明了这些新指标在评估所提出方法的帕累托效率方面的能力。
允许免费复制本作品的全部或部分以供个人或课堂使用,但不得出于营利或商业目的而复制或分发,且副本首页必须注明此声明和完整引文。必须尊重 ACM 以外的人拥有的本作品组成部分的版权。允许摘要并注明出处。以其他方式复制、重新发布、发布到服务器或重新分发到列表,需要事先获得特定许可和/或支付费用。向 permissions@acm.org 请求许可。
简介量子通信网络在量子通信领域提出了革命性步骤(1,2)。尽管实际证明了量子密钥分布(QKD)(3-8),但向许多用户扩展标准的两用户QKD协议的差异已经阻止了大规模采用量子通信。到目前为止,量子网络依靠一个或多个概率特征:可信的节点(9-13)是潜在的安全风险;主动切换(14 - 17),限制了功能和连接性;最近,波长多路复用(18)具有有限的可伸缩性。量子通信研究的最终目标是,具有基于物理定律而不是计算复杂性的安全性,使得与当前的互联网相似。为了实现这一目标,量子网络必须是可扩展的,必须允许使用不同硬件的用户必须与流量管理技术兼容,不得限制允许的网络拓扑,并且必须尽可能避免避免潜在的安全风险(如受信任的节点)。到目前为止,所有人都证明了QKD网络属于三个宽大的冠军。第一类是值得信赖的节点网络(9-12),其中假定网络中的某些或所有节点被认为可以免受窃听。在大多数实用的网络中,很少能相信每个连接的节点。此外,此类网络倾向于在每个节点上同时使用发件人和接收器硬件的多个副本,从而使成本越来越高。第二类是积极切换或“访问网络”的,其中只允许某些用户一次交换密钥(19)。同样,点对点网络网络在利基应用程序中很有用,并且已使用无源束分式(BSS)(20 - 22),活动