B瓦伦西亚生物力学研究所,瓦伦西亚理工大学,9-C建筑物,Camino de Vera,5 div>
引言肾结石症在其一生中至少有9%的人居住在美国,其患病率正在增加(1)。超过80%的肾结石含有钙,草酸钙是所有肾结石至少三分之二的主要成分(2)。肾结石病在5年内的高复发率约为50%(3)。当前减少草酸钙结石复发的方法包括一般措施,例如液体摄入量增加,饮食盐和草酸盐限制。此外,根据尿代谢异常,例如高钙尿和/或低脂肪尿素,使用噻嗪类利尿剂和柠檬酸钾。没有批准的药物用于治疗高氧甲里尿,这是草酸钙肾石石症的主要且常见的危险因素,最近公认的慢性肾脏病(CKD)进展的危险因素(4)。
1 Helene 和 Stephen Weicholz 细胞治疗实验室,马库斯神经科学研究所,博卡拉顿地区医院,800 Meadows Road,博卡拉顿,佛罗里达州 33486,美国;robin.rajan@baptisthealth.net(RGR);schowdhary.md@gmail.com(SAC);khanafy@health.fau.edu(KAH)2 赫伯特沃特海姆佛罗里达大学斯克里普斯研究所分子筛选中心,分子医学系,佛罗里达大学斯克里普斯生物医学研究中心,130 Scripps Way,朱庇特,佛罗里达州 33458,美国;vfernandezvega@ufl.edu(VF-V.);scampl@ufl.edu(LS)3 Certis Oncology,5626 Oberlin Dr. Suite 110,圣地亚哥,加利福尼亚州 92121,美国;jsperry@certisoncology.com(JS); nakashima@certisoncology.com(JN);ldo@certisoncology.com(LHD);wandrews@certisoncology.com(WA)4 生物医学信息学创新中心(ICBI),肿瘤学和生物统计学系、生物信息学和生物数学系,乔治城大学医学中心,2115 Wisconsin Ave NW, Suite G100,华盛顿特区 20007,美国;simina.m.boca@gmail.com 5 佛罗里达大西洋大学医学院,777 Glades Road,博卡拉顿,FL 33431,美国;islamr@health.fau.edu 6 Greiner Bio-One North America, Inc.,4238 Capital Drive,Monroe,NC 28110,美国;jan.seldin@gbo.com(JS); glauco.souza@gbo.com (GRS) * 通信地址:fvrionis@baptisthealth.net (FDV); spicert@ufl.edu (TPS) † 这些作者对这项工作的贡献相同。
来自杜波维茨神经肌肉中心 (FM、MC、AYM)、NIHR 大奥蒙德街医院生物医学研究中心、大奥蒙德街儿童健康研究所、伦敦大学学院和英国大奥蒙德街医院信托基金;波士顿分析集团 (JS、GS、HL、MJ、ID);马萨诸塞州剑桥协作轨迹分析项目 (JS、SJW);加州大学戴维斯分校物理医学与康复系和儿科 (CM);比利时鲁汶大学医院儿童神经病学 (NG);荷兰莱顿大学医学中心神经病学系 (EHN);伍斯特马萨诸塞大学医学院儿科 (BW);英国牛津大学儿科系 MDUK 牛津神经肌肉中心 (LS) 和比利时列日大学 CHU 儿科分部列日神经肌肉中心 (LS);英国纽卡斯尔大学及纽卡斯尔医院 NHS 基金会约翰沃尔顿肌肉萎缩症研究中心 (VS, MG);荷兰奈梅亨拉德堡德大学医学中心唐德斯神经科学中心康复系 (IJMdG);俄亥俄州辛辛那提儿童医院医学中心 (CT) 和辛辛那提大学医学院 (CT);意大利罗马天主教大学 Fondazione Policlinico Gemelli IRCCS 儿科神经病学系 (EM);以及荷兰莱顿大学医学中心人类遗传学系 (AA-R.)。
关键词:扩展,生物过程开发,自动化,CFD,对基于微载体的工艺进行了更新的兴趣,用于用于疫苗和细胞疗法的大规模培养细胞的大规模培养,这推动了有效的,高电平,单一使用,单利用的工艺开发工具的需求,这些工具可以成功地转化为工业规模的系统。自动化的AMBR250®平台就是这样的技术,其体积在100 - 250毫升之间运行,并且既是高通量又是一次性。AMBR250在基于悬浮液的哺乳动物细胞培养应用方面表现出了显着成功。但是,尚无研究研究基于微载体的依从性细胞培养的过程。在任何细胞培养过程中,必须充分理解生物反应器的流体动力学特征,以便成功地扩展到大规模的生物反应器。在微载体的情况下,由于流体动力学必须考虑到颗粒固相的存在,因此存在另一个挑战。微载体上细胞培养的关键方面是实现完全微载体悬架所需的最小搅拌速度,N JS。在这些条件下,附着的细胞的表面积可用于从中从中转移养分(包括氧)向细胞和代谢产物的转移,而较高的速度几乎不会增加这些传输过程,并可能导致产生的损害流体动态应力1。因此,测量N JS并将测量值与基于计算流体动力学(CFD)进行比较以验证后者是非常有益的。如果设备经过特殊修饰,可以轻松地观察生物反应器中的两相流,可以通过实验研究这种悬浮条件,在实际培养过程中,这非常困难。一旦经过验证,CFD建模是分析流动模式,混合时间,平均值和本地特异性能量耗散速率和其他对扩展重要的参数的非常有用的工具,以优化整体生物反应器的几何形状。除了上述流体动态方面外,还同时进行了细胞培养研究,以分析微臂悬浮液,N JS和结果的细胞生长和在特征良好的传统旋转瓶烧瓶生物反应器中的培养性能2。参考文献1。Nienow,A。W.,Coopman,K.,Heathman,T。R. J.,Rafiq,Q.A.和C. J. Hewitt(2016)。“干细胞制造的生物反应器工程基础知识”。in:“干细胞制造”,(编辑。J.M.S. Cabral,C.L。 div silva,L。G. Chase和M. M. Diogo),Elsevier Science,美国剑桥;第3章,第43 - 76页。 2。 Rafiq,Q。 A.,Brosnan,K。M.,Coopman,K.,Nienow,A。W.和Hewitt,C.J。 (2013)在5升搅拌坦克生物反应器中的微载体上的人间充质干细胞培养。 (使用Q. A. Rafiq,K。M. Brosnan,K。Coopman和C.J. hewitt),生物技术。 Lett。,35,(2013):1233-1245; d;J.M.S.Cabral,C.L。div silva,L。G. Chase和M. M. Diogo),Elsevier Science,美国剑桥;第3章,第43 - 76页。 2。 Rafiq,Q。 A.,Brosnan,K。M.,Coopman,K.,Nienow,A。W.和Hewitt,C.J。 (2013)在5升搅拌坦克生物反应器中的微载体上的人间充质干细胞培养。 (使用Q. A. Rafiq,K。M. Brosnan,K。Coopman和C.J. hewitt),生物技术。 Lett。,35,(2013):1233-1245; d;div silva,L。G. Chase和M. M. Diogo),Elsevier Science,美国剑桥;第3章,第43 - 76页。2。Rafiq,Q。A.,Brosnan,K。M.,Coopman,K.,Nienow,A。W.和Hewitt,C.J。 (2013)在5升搅拌坦克生物反应器中的微载体上的人间充质干细胞培养。 (使用Q. A. Rafiq,K。M. Brosnan,K。Coopman和C.J. hewitt),生物技术。 Lett。,35,(2013):1233-1245; d;A.,Brosnan,K。M.,Coopman,K.,Nienow,A。W.和Hewitt,C.J。(2013)在5升搅拌坦克生物反应器中的微载体上的人间充质干细胞培养。(使用Q.A. Rafiq,K。M. Brosnan,K。Coopman和C.J. hewitt),生物技术。 Lett。,35,(2013):1233-1245; d;A. Rafiq,K。M. Brosnan,K。Coopman和C.J.hewitt),生物技术。Lett。,35,(2013):1233-1245; d;
30. Kumar M、Anderson MJ、Antony JW、Baldassano C、Brooks PP、Cai MB、Chen P-HC、Ellis CT、Henselman-Petrusek G、Huberdeau D、Hutchinson BJ、Li PY、Lu Q、Manning JR、Mennen AC、Nastase SA、Richard H、Schapiro AC、Schuck NW、Suo D、Turek JS、Vo VA、Wallace G、Wang Y、Zhang H、Zhu X、Capotă M、Cohen JD、Hasson U、Li K、Ramadge PJ、Turk-Browne NB、Willke TL、Norman KA (2022) BrainIAK:脑成像分析套件。 Openings,1(4): 1-19。
参考文献:1. Olumiant [包装说明书]。印第安纳波利斯,印第安纳州:礼来美国有限责任公司;2022 年 6 月。2. 结核病感染检测。疾病控制与预防中心。2023 年 6 月 5 日检索自:https://www.cdc.gov/tb/topic/basics/risk.htm。3. Smolen JS、Landewé R、Bijlsma J 等人。EULAR 关于使用合成和生物抗风湿药物治疗类风湿性关节炎的建议:2019 年更新。Ann Rheum Dis。2020;79:685-699。4. Fraenkel L、Bathon JM、England BR 等人。2021 年美国风湿病学会类风湿性关节炎治疗指南。关节炎护理研究。 2021;0:1-16。
我谨代表公司董事会和全体官员,向尊敬的国防部长 Shri 表示诚挚的谢意。Rajnath Singhji 和国防部国务部长 Shri。Ajay Bhattji 给予了我们巨大的支持和指导。我还非常感谢印度政府国防部长 Ajay Kumar 博士对公司运作的支持和信任。如果我不记录 Shri 给予的无私支持,那我就没有尽到自己的责任。Sanjay Jaju,Addl。国防部秘书/DP 帮助 MIL 克服了旅程各个阶段的挑战。我还要感谢 Shri。国防部 Surendra Prasad Yadav、JS (LS) 和 DDP 的其他官员,他们通过持续指导为 MIL 提供支持。