摘要:连接性大疱性表皮松解症 (JEB) 是一种严重的起泡性皮肤病,由编码皮肤完整性所必需的结构蛋白的基因突变引起。在本研究中,我们开发了一种适用于研究 JEB 相关 COL17A1 基因表达的细胞系,该基因编码 XVII 型胶原蛋白 (C17),C17 是一种跨膜蛋白,参与连接基底角质形成细胞和皮肤下层真皮。利用化脓性链球菌的 CRISPR/Cas9 系统,我们将 GFP 的编码序列与 COL17A1 融合,导致 GFP-C17 融合蛋白在人类野生型和 JEB 角质形成细胞中在内源性启动子的控制下组成性表达。我们通过荧光显微镜和蛋白质印迹分析证实了 GFP-C17 的准确全长表达和定位到质膜。正如预期的那样,GFP-C17 mut 融合蛋白在 JEB 角质形成细胞中的表达未产生特定的 GFP 信号。然而,在表达 GFP-COL17A1 mut 的 JEB 细胞中,CRISPR/Cas9 介导的 JEB 相关移码突变修复导致 GFP-C17 恢复,这在融合蛋白的全长表达、其在角质形成细胞单层质膜内以及 3D 皮肤等效物的基底膜区内的准确定位中显而易见。因此,这种基于荧光的 JEB 细胞系有可能作为筛选个性化基因编辑分子和体外应用以及在适当的动物模型中体内应用的平台。
剑桥,鲁滨逊路,剑桥CB2 0RE,英国。§目前针对Douglas F. Browning的讲话,阿斯顿大学生物科学学院,伯明翰B4 7et,英国,摘要:Holliday 4-Way连接是重要的生物DNA过程的关键(插入,插入,推荐和维修),并且是富有成效的结构,是开放式或封闭式构造的动力结构,采用开放式构造表现出开放式的活跃形式。四元素金属 - 苏普拉电柱在圆柱核周围显示芳基面,从而使它们具有与开放式DNA连接的中心空腔相互作用的理想结构。结合了实验研究和MD模拟,我们表明,Au柱可以以开放形式结合DNA 4向连接(Holliday连接),这是一个以前由合成剂访问的结合模式。Au pil-larplexes也可以结合设计的三向连接,但是它们的尺寸较大,使他们可以打开并扩展该连接,破坏了基本配对,这表现出增加的流体动力大小和较低的连接热稳定性。在高载荷时,它们将4路和3路连接重新安排到Y形DNA叉中,以增加可用的连接样结合位点。结构相关的Ag菌粒显示出相似的DNA连接结合行为,但溶液稳定性较低。这种柱状结合与(但补充)的金属 - 苏普拉电圆柱体形成对比,该圆柱体更喜欢3路交叉,我们表明可以将4向连接点重新布置为3路交界结构。在人类细胞中的研究,确认柱子确实到达了细胞核,其抗增生活性的水平与顺铂相似。pillexes结合开放的四向连接的能力会产生令人兴奋的可能性,以调节和切换生物学中的这些结构,以及合成核酸纳米结构中,它们是关键的组件。这些发现提供了一个新的路线图,用于使用金属 - 苏普拉氨分子方法来靶向高阶连接结构,并扩展了可用于将生物活性连接器固定器设计到有机化化学的工具箱。
摘要 — 我们使用非平衡格林函数形式研究了边缘粗糙度对磁隧道结电传输特性的影响。我们将边缘粗糙度建模为磁隧道结横截面轮廓的随机变化,其特征是相关函数的拉伸指数衰减。形状和尺寸的随机变化改变了横向能量模式轮廓,并导致磁隧道结的电阻和开关电压发生变化。我们发现,由于量子限制效应,随着磁隧道结尺寸缩小,变化会变得更大。提出了一种模型,通过将横截面几何形状近似为具有相同横截面积的圆来有效计算边缘粗糙度效应。可以通过将横截面积近似为椭圆来获得进一步的改进,其纵横比由对应于 2D 横截面的第一个横向特征值确定。这些结果将有助于可靠地设计具有超小磁隧道结的自旋转移力矩磁性随机存取存储器(STT-MRAM)。
在众多可再生能源技术中,铜铟镓硒(CIGS)、碲化镉(CdTe)、有机和钙钛矿太阳能电池是技术成熟且经过现场验证的技术。[1–6] 这些技术用于各种场合,如光伏发电厂、光伏建筑一体化、室内能源、电动汽车和小型移动电源。[7–11] 自20世纪50年代初以来,c-Si一直是全球光伏产业的主流产品。[12–14] c-Si太阳能电池的核心结构是在p(或n)型硅衬底上扩散n(或p)型发射极形成的pn同质结。 [15] 在 c-Si 太阳能电池中,这种 pn 同质结至今仍在使用,并且可以通过众所周知的钝化发射极和背面电池及相关架构(例如钝化发射极局部扩散电池和钝化发射极背面全扩散电池)实现约 25% 的高功率转换效率 (PCE)。[16–18] 与 c-Si 太阳能电池不同,CIGS 太阳能电池器件基于 p 型 CIGS 和 n 型 CdS 层之间形成的 pn 异质结。[19–22]
摘要:通过分子控制电荷运输是具有挑战性的,因为它需要工程进行运输过程中涉及的分子轨道的能量。虽然侧基是维持许多分子材料中溶解度的核心,但它们在通过单分子连接调节电荷传输中的作用却较少。在这里,使用两种断裂结构技术和计算建模,我们系统地研究了电子粉丝和 - 抽水侧基团对通过单分子电荷传输的影响。通过表征电导和热电器,我们证明了侧基可用于操纵传输轨道的能级。此外,我们开发了一种新型的统计方法,以通过分子连接来模拟量子转运。所提出的方法不会将电极的化学电位视为游离参数,并导致对我们实验证实的更强大的电导预测。新方法是通用的,可用于预测分子的电导。
1991年《资源管理法》(RMA)的意图之一是,应将环境管理整合到所有媒体中,以便从单一的全面环境角度来考虑同意持有人对水,空气和土地的使用。因此,理事会通常会实施综合的环境监测计划,并共同报告该计划的结果。本报告讨论了公司使用水,土地和空气的环境影响,并且是该委员会委员会的第二份年度报告。
布伦瑞克枢纽场所计划定义了一个社区主导的愿景,并通过一系列行动和场所营造工具制定了实现该愿景的路线图。该行动计划旨在建立当地居民、利益相关者和郡之间的伙伴关系,概述每个重点领域的共同成果。该计划旨在促进这些联系,并以独特的布伦瑞克枢纽方式赋予社区冠军权力。
多结太阳能电池设计既要考虑理论上的最佳带隙组合,也要考虑具有这些带隙的材料的实际局限性。例如,三结 III-V 多结太阳能电池通常使用 GaAs 作为中间电池,因为 GaAs 的材料质量近乎完美,尽管其带隙高于全局光谱的最佳值。在这里,我们使用具有出色电压和吸收率的厚 GaInAs/GaAsP 应变平衡量子阱 (QW) 太阳能电池来修改中间电池的带隙。这些高性能 QW 被整合到一个三结倒置变质多结器件中,该器件由 GaInP 顶部电池、GaInAs/GaAsP QW 中间电池和晶格失配的 GaInAs 底部电池组成,每个电池都经过了高度优化。我们在 AM1.5 全局和 AM0 空间光谱下分别展示了 39.5% 和 34.2% 的三结效率,这高于之前创纪录的六结器件。
闪烁噪声通常被视为本质上最普遍的噪音(参见,例如,参考文献。[1 - 4])。它也可以实现实验性访问并进行了广泛的研究。然而,实际上,射击噪声是用于量子传输和相关多体效应的基本表征的主要噪声。这是由于其相对小信号所涉及的射击噪声所涉及的挑战。具体而言,量子相干调节器中电子电导和射击测量的组合已被广泛用于提取有关量子传输的信息。例如,这种测量在分析分数量子霍尔效应[5,6],近距效应[7,8],自旋极化的量子传输[9-14],电子 - phonon相互作用[15-18]中起着核心作用,并在揭示了局部原子结构对原子质和分子的影响方面[19-14]电子射击噪声是信息的有用来源,因为它取决于传输通道的分布,这决定了Landauer形式主义框架中的量子传输[25]。对于ev≫k b t,[12,25] ssn¼2eif给出了射击噪声在传输通道上的功率谱密度的依赖性,其中f¼½piτiτið1 -τið1 -τi= p iτi是fano因子是fano因子,并且τi是i th ins of the th ins of the th频道的传输可能性( Boltzmann的因子;考虑电导G对传输通道的明显依赖性[25],g¼g0 piτi,其中g0¼2e 2 = h是电导量子(H,Planck的常数),射击噪声和电导可以提供有关量子轴承中传输通道分布的信息,并允许多个量子相互作用的探索量量的量化量。