监测单个分子的结构转变具有重要意义,因为它有助于深入探索分子的性质,并为分子在化学、生物和材料科学领域的应用提供多样化的可能性。本综述总结了利用单分子电学方法在单分子水平上实时研究分子结构转变的策略。具体而言,通过利用稳定的单分子装置进行实时电监测,可以研究单个分子结构转变的过程,从而有助于探索化学和生物系统中分子的性质。特别是,该检测方法已经扩展到对生物大分子的研究,用于监测不同系统中核苷酸链的构象变化,例如双螺旋DNA、适体和DNA酶。最后,我们讨论了探测单分子结构转变的未来挑战,并为该领域的进一步突破提供了前景。
图5。1 -like(浅蓝色)或2个(洋红色)痕迹的1D直方图由混合溶液测量的不同模型排序。基于使用0.4 nm片段作为输入的分类结果显示为实线。作为参考,使用剪切迹线作为输入的分类结果在此重现为阴影区域。(a)应用于0.4 nm片段的CNN模型会产生3066 1类和5216 2类样痕迹(与3406 1类似于3406 1 -like和4876 2-在使用完整迹线时喜欢痕迹)。(b)应用于0.4 nm片段的PC 1 /1DH模型产生6053 1类和2229 2类样痕迹(与4397 1-类似于4397 1 -like和3901 2 -like tlace时,使用完整的痕迹时)。(c)应用于0.4 nm片段的KMeans/2DH模型产生392 1-类似于7890 2-像痕迹(与5260 1 -like和3022 2 -2 -like Traces相比,当使用完整的迹线时)。(d)应用于0.4 nm片段的逻辑回归模型产生的4730 1类和3553 2类样痕迹(与4569 1-类似于4569 1的痕迹和3713 2 -2 -like tlace tlace时使用完整痕迹时)。
摘要:许多探索拓扑量子计算的提案都是基于在具有强自旋轨道耦合 (SOC) 的材料上构建的超导量子装置。对于这些装置,对超电流的大小和空间分布的完全控制要求很高,但到目前为止仍难以实现。我们在 Bi 2 O 2 Se 纳米板上构建了一个近距离型约瑟夫森结,Bi 2 O 2 Se 是一种具有强 SOC 的新兴半导体。通过电门控,我们表明超电流可以完全打开和关闭,并且其实空间路径可以通过本体或沿边缘配置。我们的工作表明 Bi 2 O 2 Se 是构建多功能混合超导装置以及寻找拓扑超导性的有前途的平台。关键词:Bi 2 O 2 Se 纳米板、超电流、空间分布、约瑟夫森结
目的:化疗是晚期结肠癌的主要治疗方法,但其疗效往往受到严重毒性的限制。以选择性药物输送系统 (SDDS) 形式的靶向治疗是减少副作用的重要策略。在这里,我们旨在设计一种具有实际应用潜力的新型 SDDS,使用生物相容性组件和可扩展的生产工艺,将阿霉素 (Dox) 靶向输送到结肠癌细胞。方法:SDDS 由自组装 DNA 纳米十字架 (Holliday 连接或 HJ) 制成,该十字架由四个 AS1411 适体 (Apt-HJ) 功能化并装载 Dox。结果:Apt-HJ 的平均尺寸为 12.45 nm,zeta 电位为 − 11.6 mV。与单价 AS1411 适体相比,四价 Apt-HJ 显示出与靶癌细胞 (CT26) 更强的结合。将 Dox 插入 Apt-HJ 的 DNA 结构中形成 Apt-HJ 与阿霉素的复合物 (Apt-HJ-Dox),每个复合物携带约 17 个 Dox 分子。共聚焦显微镜显示,Apt-HJ-Dox 选择性地将 Dox 递送到 CT26 结肠癌细胞中,但不递送到对照细胞中。此外,Apt-HJ-Dox 在体外实现了对 CT26 癌细胞的靶向杀伤,并减少了对对照细胞的损伤。重要的是,与游离 Dox 相比,Apt-HJ-Dox 显著增强了体内抗肿瘤效果,而不会增加副作用。结论:这些结果表明 Apt-HJ-Dox 在结肠癌的靶向治疗中具有应用潜力。关键词:结肠癌,靶向治疗,适体,霍利迪连接体,阿霉素
本论文研究基于近端 InAs/Al 纳米线的超导量子比特。这些量子比特由半导体约瑟夫森结组成,并呈现了 transmon 量子比特的门可调导数。除了门控特性之外,这个新量子比特(gatemon)还根据操作方式表现出完全不同的特性,这是本论文的主要重点。首先,系统地研究了 gatemon 的非谐性。在这里,我们观察到与传统 transmon 结果的偏差。为了解释这一点,我们推导出一个简单的模型,该模型提供了有关半导体约瑟夫森结传输特性的信息。最后,我们发现该结主要由 1-3 个传导通道组成,其中至少一个通道的传输概率达到大于 0.9 的某些门电压,这与描述传统 transmon 结的正弦能量相位关系形成鲜明对比。接下来,我们介绍了一种新的门控设计,其中半导体区域作为场效应晶体管运行,以允许通过门控设备进行传输,而无需引入新的主导弛豫源。此外,我们展示了传输和过渡电路量子电动力学量子比特测量之间的明显相关性。在这种几何结构中,对于某些栅极电压,我们在传输和量子比特测量中都观察到量子比特谱中的共振特征。在共振过程中,我们仔细绘制了电荷弥散图,在共振时,电荷弥散显示出明显抑制的数量级,超出了传统的预期。我们通过几乎完美传输的传导通道来解释这一点,该通道重新规范了超导岛的电荷。这与开发的共振隧穿模型在数量上一致,其中大传输是通过具有近乎对称的隧道屏障的共振水平实现的。最后,我们展示了与大磁场和破坏性 Little-Parks 机制中的操作的兼容性。当我们进入振荡量子比特谱的第一叶时,我们观察到出现了额外的相干能量跃迁。我们将其解释为安德烈夫态之间的跃迁,由于与 Little-Parks 效应相关的相位扭曲,安德烈夫态在约瑟夫森结上经历了路径相关的相位差。这些观察结果与数值结模型定性一致。
在A点和B点之间,它是JFET的欧姆地区。是欧姆定律遵循电压和当前关系的地区。在B点,对于V GS = 0条件,排水电流为最大,定义为I DSS。这是捏点,因为漏极到源电压V ds进一步增加。此时V ds电压称为捏电压V p。这也是电压点,在该电压点上,排出通力的电压V DG产生足够的耗竭厚度以缩小通道,从而使通道的电阻显着增加。由于V GS = 0,V DS也等于V DG。因此,通常,捏电压V P为V P = V DS(P)-V GS(4.1),其中V DS(P)是V GS值的捏合漏极到源电压。i dss和v p是制造商列出的给定JFET类型列出的常数值,这是Gate-to-Source电压v GS =0。
免责声明:1- 为改进产品特性,本文档提供的信息(包括规格和尺寸)如有变更,恕不另行通知。订购前,建议购买者联系 SMC - 桑德斯特微电子(南京)有限公司销售部,获取最新版本的数据表。2- 在需要极高可靠性的情况下(例如用于核电控制、航空航天、交通设备、医疗设备和安全设备),应使用具有安全保证的半导体器件或通过用户的故障安全预防措施或其他安排来确保安全。3- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对用户根据数据表操作设备期间因事故或其他原因造成的任何损害负责。 SMC - 桑德斯特微电子(南京)有限公司对任何知识产权索赔或因应用数据表中描述的信息、产品或电路而导致的任何其他问题不承担任何责任。4- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对因使用超过绝对最大额定值的数值而导致的任何半导体设备故障或任何二次损坏负责。 5- 本数据表不授予任何第三方或 SMC - 桑德斯特微电子(南京)有限公司的任何专利或其他权利。6- 未经 SMC - 桑德斯特微电子(南京)有限公司书面许可,不得以任何形式复制或复印本数据表的全部或部分。7- 本数据表中描述的产品(技术)不得提供给任何其应用目的会妨碍维护国际和平与安全的一方,其直接购买者或任何第三方也不得将其用于此目的。出口这些产品(技术)时,应根据相关法律法规办理必要的手续。
