神经封闭证书Alireza Nadali; Vishnu Murali; Ashutosh Trivedi; MDPS Mateo Perez中的LTL和Omega-grounder目标的Majid Zamani学习算法;法比奥·索恩齐(Fabio Somenzi); Ashutosh Trivedi朝着K-Means聚集Stanley Simoes的更公平的质心; deepak p; Muiris MacCarthaigh的稳定性分析具有神经Lyapunov功能的切换线性系统Virginie Debauche;亚历克·爱德华兹(Alec Edwards); RaphaëlJungers; Alessandro Abate Advst:重新访问单个领域概括的广托Zheng的数据增强; Mengdi Huai; Aidong Zhang Omega规范决策过程Ernst Moritz Hahn; Mateo Perez; Sven Schewe;法比奥·索恩齐(Fabio Somenzi); Ashutosh Trivedi; Dominik Wojtczak Sentinellms:私人和安全推理的语言模型的加密输入适应和微调
排序是理论计算机科学中的基本算法问题之一。它具有自然概括,由弗雷德曼(Fredman)于1976年引入,称为部分信息。The input consists of: - a ground set X of size n , - a partial oracle O P (where partial oracle queries for any ( x i , x j ) output whether x i ≺ P x j , for some fixed partial order P ), - a linear oracle O L (where linear oracle queries for any ( x i , x j ) output whether x i < L x j , where the linear order L extends P ) The goal is to recover the linear order使用最少数量的线性甲骨文查询在X上l。在此问题中,我们通过三个指标来测量算法复杂性:o l的线性甲骨文查询数量,部分甲骨文查询的数量和所花费的时间(识别哪个对(x i,x J)部分或线性oracle查询所需的算法指令的数量(识别哪个对(x I,x)执行)。令E(P)表示p的线性扩展数。 任何算法都需要最差的库log 2 e(p)线性甲骨文查询才能恢复x上的线性顺序。 在1984年,Kahn和Saks提出了第一个使用θ(log e(p))线性甲骨文查询(使用O(n 2)部分Oracle查询和指数时间)的算法。 从那时起,一般的问题和受限变体都经过一致研究。 一般问题的最新问题是Cardinal,Fiorini,Joret,Jungers和Munro,他们在Stoc'10设法将线性和部分甲骨文查询分为预处理和查询阶段。 他们可以使用O(n 2)部分Oracle查询和O(n 2。)进行预处理P 5)时间。令E(P)表示p的线性扩展数。任何算法都需要最差的库log 2 e(p)线性甲骨文查询才能恢复x上的线性顺序。在1984年,Kahn和Saks提出了第一个使用θ(log e(p))线性甲骨文查询(使用O(n 2)部分Oracle查询和指数时间)的算法。从那时起,一般的问题和受限变体都经过一致研究。一般问题的最新问题是Cardinal,Fiorini,Joret,Jungers和Munro,他们在Stoc'10设法将线性和部分甲骨文查询分为预处理和查询阶段。他们可以使用O(n 2)部分Oracle查询和O(n 2。5)时间。然后,给定o l,它们在θ(log e(p))线性甲骨文查询和o(n + log e(p))时间的x(log e(p))上的线性顺序 - 这在线性甲骨文查询的数量中是最佳的,但在所花费的时间中却没有。我们提出了第一种使用偏隔序数量甲骨文查询的第一个算法。对于任何常数C≥1,我们的算法可以使用O(n 1+ 1
应用于现实世界分析和控制应用程序(例如机电系统系统(Abraham和Murphey,2019年),(Cisneros等,2020),分布式参数系统(Klus等,2020))。为了实际使用,需要选择有限数量的可观察到的物品,这称为举重。基于这些,构建了时间变化的数据矩阵,以通过最小二乘矩阵近似Koopman运算符计算。该技术被称为Excended动态模式分解(EDMD)(Williams等,2015)。但是,主要问题是可观察物的选择是启发式的,并且无法保证所得模型的质量。为了解决这个问题,一种解决方案是使用数据驱动的技术从数据中学习提升,以规避可观察物的手动选择(Lusch等,2018)(Iacob等,2021)。尽管如此,这仍然是一个近似值,并且有关如何将非线性系统嵌入精确的线性有限尺寸提升表示的问题,并且在可能的情况下,仍然可以打开。这是一个重要的算法,因为出于控制目的,具有确切的有限尺寸嵌入允许将可用的控制工具应用于线性系统。此外,如果模型中存在无法量化的近似错误,则将无法实现预期的性能。为了解决这个问题,已经尝试将Koopman框架与沉浸式(Wang and Jungers,2020)和Carleman线性化连接起来,以获得清晰的计算观测值的方式。紧密连接到然而,在沉浸式方法中,有限的维度完全线性提升的存在很大程度上取决于系统的可观察性特性,并且通常,所得的填充物包含非线性输出注入(Krener和Isidori,1983),(Jouan,2003年)。