孩子们喜欢太空探索,但他们不一定知道火箭和航天器实际上是如何工作的。孩子们可以根据物理学使用以太空为主题的游戏,以了解有关金属圆柱体如何充满推进剂移动和在太空中相互作用的方式,同时仍然很开心。我们谈论我们的示例视频,重点关注儿童太空迷,以帮助他们开始。我们使用当前在稳定版本中可用的游戏,首先从基本概念2D游戏(例如Simpleerockets)开始,然后再使用Space -Flight Simulator(也是2D)。从那里,我们在Simpleerockets 2中提供了发展到3D运动的示例,现在称为Juno:New Origins,Kerbal Space Program和Kerbal Space Program的新版本2。我们将介绍如何教孩子Delta-V和特定冲动等概念。我们的目标是帮助孩子和老师从诸如亚轨道轨迹等简单概念和轨道上发展,再到火箭舞台,轨道转移,会合,登陆,降落以及最终的更先进的概念,最终,在跨层次的trips上获得的资源保护和效率。
物理与天文学院:2021-2026 年战略计划愿景 - 世界领先的圣安德鲁斯学院的核心战略是在我们选择的优势领域取得卓越成就,以提供世界一流的研究、影响力和教学。我们在 REF2014 中的成就(GPA 在英国并列第三)、在大学排行榜和全国学生调查中反复名列前茅,以及我们的 JUNO 冠军和雅典娜 SWAN 银奖见证了这一战略的成功。我们希望通过寻找机会来增加我们的研究影响力以及我们的资助和教学收入,从而巩固这一优势地位。我们将加强我们在天体物理学、凝聚态和光子学方面的核心研究领域,并进一步发展我们的研究中心,以满足大学的跨学科优先事项,即现代世界的材料、健康、传染病和福祉、大数据、可持续性、进化、行为和环境、和平、冲突与安全以及文化理解。我们渴望创建一所全球知名的学院,成为在包容环境中进行卓越研究和教学的灯塔,促进创造力、独创性和员工的福祉。
• 韩国探路者月球轨道器 (KPLO,也称为 Danuri) 是韩国首个月球探测任务,于 2022 年 8 月发射,通过弹道月球转移至极地低月球轨道。其目标包括确定未来月球任务的潜在着陆点。 • 美国宇航局/欧空局/加拿大航天局詹姆斯·韦伯太空望远镜于 2021 年 12 月 25 日发射,于 2022 年 1 月 24 日成功进入围绕地球-太阳 L2 拉格朗日点的光环轨道。 • 2022 年 9 月 29 日,美国宇航局的朱诺号航天器自 22 年前伽利略号逝世以来最近一次飞越木卫二。这次飞越缩短了航天器的轨道周期,并提供了月球表面的详细照片,为即将于 2024 年发射的欧罗巴快船任务做准备。 • 欧空局和日本宇宙航空研究开发机构的贝皮科伦坡号航天器正在顺利前往水星的途中,已经进行了第二次
地址为Daniel Huff(Huff.daniel@mayo.edu)的通信。支持来源:无。Conflict of Interest: Javier Munoz reports the following: consulting for Pharmacyclics/Abbvie, Bayer, Gilead/Kite Pharma, Pfizer, Janssen, Juno/Celgene, BMS, Kyowa, Alexion, Fosunkite, Innovent, Seattle Genetics, Debiopharm, Karyopharm, Genmab, ADC Therapeutics, Epizyme, Beigene,Servier,Novartis,Morphosys/Incyte,Mei Pharma和Zodiac;拜耳,吉利德/风筝制药,塞尔金,默克,波尔托拉,incyte,incyte,genentech,Pharmacyclics,Seattle Genetics,Janssen和Millennium获得的研究资金;有针对性肿瘤学,Oncview,Curio,Kyowa,医师教育资源,DAVA,全球临床见解,MJH和西雅图遗传学的Honoraria;发言人的吉利德/风筝制药局,京止,拜耳,药学/詹森,西雅图遗传学,acrotech/aurobindo,beigine,beigene,verastem,verastem,astrazeneca,celgene/celgene/bms和genentech/genentech/roche/roche。其余作者没有披露。
台山反中微子观测站(TAO,又称JUNO-TAO)是江门地下中微子观测站(JUNO)的卫星实验。一台吨级液体闪烁体探测器将放置在距离台山核电站核心约 30 米的地方。反应堆反中微子谱将以亚百分能量分辨率进行测量,为未来的反应堆中微子实验提供参考谱,并为测试核数据库提供基准测量。一个装有 2.8 吨钆掺杂液体闪烁体的球形丙烯酸容器将通过 10 m 2 硅光电倍增管 (SiPM) 进行观察,其光子探测效率 > 50%,几乎完全覆盖。光电子产量约为每兆电子伏 4500 个,比任何现有的大型液体闪烁体探测器都要高一个数量级。该探测器在 -50 ◦ C 下运行,以将 SiPM 的暗噪声降低到可接受的水平。该探测器每天将测量约 2000 个反应堆反中微子,并设计为能够很好地屏蔽宇宙背景和环境放射性,使背景信号比约为 10%。该实验预计将于 2022 年开始运行。
我们是一个以价值观为导向的国家实验室,我为我们多元化和国际化的员工队伍继续产生全球性影响感到非常自豪。NPL 是第一个获得英国物理研究所 Juno Practitioner 称号的非大学机构,以解决性别平等问题,最近还提供了 4 个 Daphne Jackson 奖学金,以支持和指导研究人员在休息后重返 STEM 职业。我们的外展活动涉及许多担任 STEM 大使的员工,将科学和测量带入社区,以促进 STEM 职业并增加公众对科学的参与。我们每年组织 300 多场活动,与 70,000 多人互动。最近的科学亮点包括在《科学》杂志上发表的一篇文章,描述了使用海底通信电缆开发检测水下地震的创新方法的激光技术。我们还参与了世界上最先进的空气质量监测网络的工作,以更好地了解伦敦人接触空气污染的情况;帮助制造了一种合成病毒来应对抗生素耐药性;并继续领导一个多学科联盟,建立癌症“谷歌地球”,该联盟由英国癌症研究中心颁发的最大一笔资助。合作伙伴关系是我们成功的关键。我们与战略合作伙伴思克莱德大学和萨里大学的关系使研究生院 (PGI) 的学生人数增长到 200 多人。W
摘要。Opticks是一个开源项目,它通过集成通过NVIDIA OPTIX 7 + API访问的GPU射线跟踪来加速光光子仿真,并具有基于GEANT4的仿真。已经测量了第一个RTX生成的单个NVIDIA Turing GPU,以提供超过1500倍单线GEANT4的光子光子模拟速度因子,并具有完整的Juno Analytic GPU几何形状自动从GEANT4 GEOM-ETRY转换。基于GEANT4的CUDA程序,实施了散射,吸收,闪烁体再发射和边界过程的光学物理过程。波长依赖性的材料和表面特性以及重新发射的反向分布函数被交织成GPU纹理,从而提供快速插值的属性查找或波长产生。在这项工作中,我们描述了采用全新的NVIDIA OPTIX 7 + API所需的几乎完整的重新实现,现在实现了基于OPTIX使用的CUDA,仅限于提供相交。重新实现具有模块化的许多小型标头设计,可在GPU和CPU上进行细粒度测试,并从CPU / GPU共享中减少大量代码。增强的模块化已使CSG树的通用 - 类似于G4Multiunion的“列表节点”,从而改善了复杂CSG固体的表现。还支持对多个薄层(例如抗反射涂层和光阴道)的边界的影响,并使用CUDA兼容传递矩阵方法(TMM)计算反射,透射率和吸收性的计算。
申请人:NextEra Energy Resources Development LLC 700 Universe Boulevard, E5E Juno Beach, FL 33408 业主:Sierra Pacific Real Estate LLC PO Box 496028 Redding, CA 96049 Puget Sound Energy PO Box 97034 Bellevue, WA 98009 场地地址:McFarland Road(P131483)西侧,Ovenell Road 以南,相邻的东侧房产地址为 14658、14660 和 14662 Ovenell Road 法律说明:P129949:SIERRA PACIFIC 约束性场地规划第 1 地块,记录在 AF#200911160068、SE1/4 SEC 9 TWP 34 RGE 3 下。调查 AF#201003170060 P21265 :边界线调整地块 B,记录在 AF#200903180106 下,描述如下:地块 'B' 由边界线调整退出土地契约创建,记录于 2008 年 3 月 4 日,县审计员文件编号为 200803040059,所述地块是 SKAGIT 县短地块编号 2 的一部分。 44-87,1987 年 12 月 29 日批准,第 34 镇北区第 9 区东北 1/4 区西 1/2 区,第 3 区东西区,但位于该 50 英尺宽输油管道地役权中心线以南的部分除外,该部分已通过 1954 年 7 月 9 日的文书转让给 TRANS MOUNTAIN 输油管道公司,并于 1954 年 9 月 16 日在上述县和州审计办公室的县审计员档案编号 506571 下记录。调查编号 AF#201003170060
大型陨石碰撞引起的地球轴变化 GALLANT 1 评估了大型陨石碰撞引起的地球轴变化。但他估计的位移比我十年前发表的更大,而且最近略有修改。他计算出一颗朱诺大小的陨石(直径约 190 公里)以 20 公里/秒的速度碰撞将导致 0° 45 的轴位移。但是,通过使用地球角动量与碰撞体动量矩相互作用的正确标准,实际位移只有大约 0° 02'。事实上,一个更大的物体,比如直径 320 公里,以 72 公里/秒的最大可能速度碰撞,尽管能量是朱诺示例的 75 倍,也只会产生 0° 32' 的轴位移。表 1 给出了与地球和月球碰撞的最大影响的例子。假设碰撞路径与垂直于赤道的大圆相切,密度为 3.5,速度为 72 公里/秒,爆炸产物反向碰撞引起的完全反弹最大程度地近似于两倍动量交换。在这些绝对最佳的条件下,轴位移为反正切(2m VR:地球的角动量),其中 m V 是陨石的动量,R 是地球或月球的半径。当假设碰撞与赤道相切时,轴变化为零,但两个动量会导致自转速度的变化。月球的等效变化要大得多,它们表明,只要有耐心和时间,人类就有可能在没有卫星和登陆月球的情况下看到整个表面。它们也与月球形状的考虑有关。
上下文。太阳系中气体巨头的内部模型传统上假设一个完全对流的分子氢包膜。,朱诺任务的最新观察结果表明,木星的分子氢包膜可能会耗尽碱金属的耗竭,这表明稳定的辐射层可能存在于千巴水平。最近的研究表明,深稳定的层有助于调和各种木星观测,包括其大气水和二线丰度以及其区域风的深度。但是,用于推断稳定层的不透明表通常被过时且不完整,从而使深辐射区域所需的精确分子氢包膜组成不确定。目标。在本文中,我们确定可以导致木星和土星在千巴尔水平的辐射区形成的大气组成。方法。我们计算了覆盖高达10 5 bar的压力,包括太阳系气体巨头中最丰富的分子以及自由电子,金属氢化物,氧化物和原子质物种的贡献,其中包括最丰富的分子。这些表用于计算木星和土星分子氢化膜的罗斯兰均值不透明,然后将其与维持对流所需的关键平均不透明度进行了比较。结果。我们发现,辐射区的存在是由木星和土星大气中的K,Na和Nah的存在控制的。相比之下,对于土星,K和Na所需的丰度低于10-4倍太阳能。对于木星,K和Na的元素丰度必须小于10 - 3倍太阳能才能形成辐射区。