由于需要便携式电子设备和笔记本电脑的持续时间,抽象功率包在受欢迎程度上升。笔记本电脑中的内置电池只能持续几个小时才排出。结果,必须使用外部充电器来保持电子设备运行,包括手机。本文描述了笔记本电源包的进化,结构和关键组成部分,以了解其操作。它是使用可用组件构建的,它由电荷控制器组成,该组件由电池电池(每个阵列中的4个阵列)在系统中与电池管理(bms)中安装的系统(BMS)中安装的系统(bms)中的系统构成(bms)中的系统,在图中(bms)中调整了lithium电池的变化(3.2V),该速率是在Photoice Offiter(bms)中(BMS),该系统的转换器(bms)构成,该系统的转换器(bms)在Photoice Offerefecter(bms)中均在电池中(bms),均匀构建。当需要更高的功率为系统充电时,转换器有助于增强能量。它具有50W的太阳能电池(光伏)和78Wh的系统功率,可以方便地为所有笔记本电脑提供两次全部充电,并且还可以使用电源为所有可用系统充电。150W的转换器功率(容量),储存的72Wh,读取灯的平均充电时间为6.7小时,HP笔记本电脑为4.35hrs的HP笔记本电脑,数量等效于2,总效率为83%,Python Jupiter的总效率为83%,以绘制使用时间。关键字:动力包,升压传输器,光伏电池r Eceived 2022年1月1日; r于2023年1月9日; 2023年1月11日coccepted©作者2023。在www.questjournals.org
史他汀类药物的第一个是在1987年引起的,许多临床试验表明,这些药物有效地降低了低密度脂蛋白混合洛尔(LDL-C)水平,始终降低了包括许多类型患者的动脉粥样硬化心血管疾病事件的风险,包括2型糖尿病,包括2-Diabetes Mellius Mellius Mellus Mellius Mellius Mellus。1其中一项试验之一 - 苏格兰冠状动脉预防研究(Woscops),2例患者2,甚至报道他汀类药物降低了新发育糖尿病的风险。然后,一项更大的试验 - 用于预防他汀类药物的局限性:一项评估rosuvastatin(Jupiter)3的干预试验,其中17,802名用Rosuva-pthtim或安慰剂治疗的参与者 - 在Rosuvastatin组中发现了更高的糖尿病发生率。这种观察提出了问题,并努力提出了答案。他汀类药物会导致糖尿病吗?如果这样做,所有他汀类药物都是如此吗?风险是他汀类药物的效力和剂量的功能吗?此效果还有其他风险因素吗?在已经患有疾病的患者中,他汀类药物会恶化血糖控制吗?最重要的是,在降低心血管风险中使用他汀类药物的使用是否大于新发糖尿病的风险增加?有两个警告是有必要的。首先,在大多数研究中,新发育糖尿病是由个别研究者诊断的,而不是根据任何方案诊断的。这可能是不足的,但是在双盲试验中,每个治疗组的诊断量可能大致相同。第二,在他汀类药物治疗的患者中,没有足够的有关腹膜肌膜微血管并发症的数据来保证doi:10.3949/ccjm.90a.22069
2024 年 10 月 21 日——马德里深空通信综合体 (MDSCC) 本周一纪念了一件大事。今年是 1964 年 1 月 29 日 60 周年,当时西班牙、美国政府、INTA 和 NASA 首次签署了西班牙综合设施运营和维护合同。今天,位于罗夫莱多德查韦拉的太空综合体在西班牙和美国当局的出席下庆祝了这一重要里程碑。MDSCC 的建设始于 1964 年 8 月,但直到第二年,随着第一根直径为 26 米的天线的完工,它才开始运行。该设施在创纪录的时间内完工,因为它的全面可操作性对于接收来自水手四号任务的数据至关重要,该任务捕捉到了另一颗行星(火星)的第一张图像。事实上,MDSCC 是深空网络的三个全球通信中心之一,另外两个是位于澳大利亚堪培拉和加利福尼亚州戈德斯通的通信中心。罗夫莱多航天中心负责跟踪、控制和遥测各种航天任务,例如用于研究木星和土星的卡西尼-惠更斯号、用于研究 67P/丘留莫夫-格拉西缅科彗星的罗塞塔号、用于探索太阳系边界的航海者 1 号和 2 号以及新视野号,以及用于在红外光下观察天空的詹姆斯·韦伯太空望远镜。这次会议的目的不仅是为了庆祝航天中心这些年来取得的成功和可操作性,也是为了重申西班牙和美国、INTA 和 NASA 在未来 60 年的合作,目的是通过未来的任务继续扩大我们对太空的了解。这些任务包括阿尔特弥斯号,它
裂变发电是一项很有前途的技术,它已被提议用于未来的几种太空用途。它正在考虑用于旨在探索太阳系甚至更远地方的大功率任务。当 NASA 的 1 kWe 千瓦斯特林技术反应堆 (KRUSTY) 原型于 2018 年完成全功率核试验时,空间裂变发电取得了巨大进展。它的成功激发了主要太空国家之间新一轮的研究竞争。本文回顾了 Kilopower 反应堆和 KRUSTY 系统设计的发展。它总结了目前正在考虑将裂变反应堆作为动力和/或推进源的任务。这些项目包括访问木星和土星系统、凯龙星和柯伊伯带天体;海王星探索任务;以及月球和火星表面基地任务。这些研究表明,对于功率水平达到~1 kWe的任务,裂变电推进(FEP)/裂变动力系统(FPS)在成本方面优于放射性同位素电推进(REP)/放射性同位素动力系统(RPS),而当功率水平达到~8 kWe时,它具有质量更轻的优势。对于飞行距离超过~土星的任务,含钚的REP可能在成本上无法接受,因此FEP是唯一的选择。地面任务更喜欢使用FPS,因为它满足10's kWe的功率水平,并且FPS大大拓宽了可能的着陆点的选择范围。按照目前的情况,我们期待在未来1-2年内实现旗舰级的裂变动力太空探索任务。
第1章:p。 1:John Foxx/Stockbyte Silver/Getty Images。第2章:p。 117:安德鲁·布鲁克斯(Andrew Brookes/Corbis); p。 128:Bryan Mullennix/Iconica/Getty Images; p。 132:由NASA和JPL提供; p。 145:托尼·克拉多克/盖蒂图像; p。 159:路透社/新媒体公司/Corbis。第3章:p。 254:由理查德·国家(Richard Nation)提供。第4章:p。 307:McDuff/Everton/Corbis。第5章:p。 334:Dennis de Mars/Fractal域/www.fractaldomains.com; p。 334:史蒂夫·艾伦/阿拉米; p。 351:Granger Collection。第6章:p。 371:1998年人工视觉质量控制国际会议 - QCAV '98,喀瓦瓦会议中心,高毛,日本喀瓜瓦,1998年11月10日至12日,第1998年,pp。521–528; p。 372:伊恩·莫里森(Ian Morison/Jodrell Bank)音乐学院; p。 374:由Opti-Gone International的Michael Levin提供。经许可转载; p。 389:休·鲁尼(Hugh Rooney)/眼睛无处不在/科比斯(Corbis); p。 397:Granger Collection。第7章:p。 451:美联社/世界照片; p。 458:Bettmann/Corbis; p。 463:Charles O'Rear/Corbis; p。 464:David James/Getty Images; p。 467:Bettmann/Corbis; p。 474:Jan Halaska/Index库存图像/木星图像; p。 513:Tom Brakefield/Corbis; p。 521:Bettmann/Corbis; p。 525:AP/广阔世界。
Quadrelli 博士是首席研究技术专家,也是 JPL 机器人部门机器人建模与仿真小组的主管。他是复杂空间系统动力学和控制建模方面的专家。他拥有意大利帕多瓦机械工程学位、麻省理工学院航空航天学硕士学位和佐治亚理工学院航空航天工程博士学位。他曾是哈佛-史密森天体物理中心、造纸科学与技术研究所的客座科学家,以及加州理工学院研究生航空实验室的讲师。1997 年加入 NASA JPL 后,他为许多飞行项目做出了贡献,其中包括卡西尼-惠更斯探测器、深空一号、火星飞行器测试计划、火星探测车、空间干涉测量任务、自主会合实验和火星科学实验室等。他曾担任木星冰卫星轨道器项目的姿态控制负责人,以及激光干涉仪空间天线的综合建模任务经理。他曾领导或参与多个独立研发项目,涉及计算微力学、系留空间系统动力学与控制、编队飞行、充气孔径、高超音速进入、精确着陆、柔性多体动力学、航天器群制导、导航与控制、地面力学以及光学系统精确指向等领域。他目前的研究兴趣是多领域、多物理、多体、多尺度基于物理的建模、动力学和控制。他是美国航空航天学会副研究员、美国宇航局高级概念研究所研究员和加州理工学院/凯克空间研究所研究员。
未来,NASA 科学任务理事会行星科学部希望使用性能更好、成本更低的推进系统将探测车、探测器和观测器送往火星、木星和土星等地。为此,NASA 位于格伦研究中心的太空推进技术 (ISPT) 项目开发了一种名为先进材料双推进剂火箭 (AMBR) 的新型推进技术。作为一种先进的化学推进系统,AMBR 使用四氧化二氮氧化剂和肼燃料来推动航天器。根据目前的研究和开发努力,该技术有望提高发动机运行速度和使用寿命,并降低制造成本。在开发 AMBR 时,ISPT 有几个目标:缩短航天器到达目的地所需的时间、降低制造推进系统的成本以及减轻推进系统的重量。如果实现这些目标,它将提高太空科学调查的能力。例如,如果航天器所需的推进剂数量(和重量)减少,则可以在航天器上添加更多科学仪器(和重量)。为了实现 AMBR 的最大潜在性能,发动机需要能够在极高的温度和压力下运行。为此,ISPT 需要由铱涂层铼(坚固的高温金属元素)制成的发动机室,允许在接近 4,000 °F 的温度下运行。此外,ISPT 需要一种先进的制造技术,以便更好地涂层方法,从而提高发动机室的强度,而不会增加制造发动机室的成本。
摘要 我们计划使用 NIRSpec 积分场单元 (IFU) 拍摄真正的太阳系气态巨行星类似物、标志性的 eps Eridani b 的第一张图像和光谱。Eps Eri b 是一颗已知的径向速度行星,围绕附近的类太阳恒星 (K2V) 运行,轨道距离约为 3.5 au(周期为 7.3 年),其动态质量介于土星和木星之间(0.57-0.78 MJup),这意味着它可以直接与太阳系气态巨行星进行比较。这颗青少年(4 亿至 8 亿年)亚木星是独一无二的,因为就半长轴、质量和年龄而言,它位于凌日和直接成像的系外行星之间。到目前为止,该参数空间区域无法进行光谱表征。此外,第 3 周期是观察该行星的最佳时间,因为它处于最远的投影分离状态,这种情况每 4 年才发生一次。我们将针对这颗冷亚木星的峰值通量(~140-215 K)获得 3-5 微米的 R~2,700 光谱,并首次测量其亮度、有效温度和成分(C/H、O/H、N/S)。由于第 1 周期数据证明 NIRSpec IFU 可以达到优于 JWST 日冕仪的对比度(35 分钟内 1'' 处 1e-6),因此可以直接探测到 eps Eri b。观察描述我们建议使用 NIRSpec 积分场单元(IFU;G395H/F290LP;2.87 - 5.27 微米)拍摄 eps Eridani b 的第一张图像和高分辨率光谱(R=2,700)。
第一类:所有类型的目标天体任务,这些目标天体对于理解化学演化过程或生命起源无直接意义;未分化的变质小行星;其他 第二类:所有类型的任务(重力辅助、轨道器、着陆器),这些目标天体对于化学演化过程和生命起源有重大意义,但航天器所携带的污染物对未来调查造成影响的可能性极小;金星;月球(仅在极地和 PSR 中着陆任务才有有机库存);彗星;碳质球粒陨石小行星;木星;土星;天王星;海王星;木卫三†;土卫六†;海卫一†;冥王星/冥卫一†;谷神星;大于冥王星 1/2 大小的柯伊伯带天体†;小于冥王星 1/2 大小的柯伊伯带天体;其他 TBD 第三类:飞越(即重力辅助)和轨道器任务,前往对化学演化和/或生命起源感兴趣的目标天体,科学界认为该目标天体受到污染的可能性很大 2,这可能会危及未来的调查;火星;木卫二;土卫二;其他 TBD 第四类:着陆器(以及潜在的轨道器)任务,前往对化学演化和/或生命起源感兴趣的目标天体,科学界认为该目标天体受到污染的可能性很大 2,这可能会危及未来的调查。根据仪器、科学调查、特殊区域等,存在 3 个子类别(IVa、b、c);火星;木卫二;土卫二; TBD 第五类:返回所有地球:2 个子类别 - 对于科学界认为没有本土生命形式(如火星卫星)的太阳系天体,无限制返回,对于所有其他天体,有限制返回
第二版的统计力学:熵,订单参数和复杂性特征在一百个新练习中,以及第一版中许多练习的修改和修订。主要章节在很大程度上是没有变化的,除了我对第12章的重新归一化小组的讨论进行了重构。的确,这些章节被设计为其主题的稳定内核,而练习涵盖了统计力学的引人入胜的应用和含义的日益增长的范围。这本书反映了“翻译教室”的创新,我发现这具有非常有效的作用。我已经确定了一百个前阶段的问题和课堂活动,前者旨在阐明和重新控制文本的部分,而后者则是为小组协作而设计的。这些用符号⃝p和⃝a表示,在第一个版本中使用的难度等级⃝1 - ⃝5。人类的相关性,指纹和crack啪声是我最喜欢的活动。这些练习以及一系列较少的较长练习,构成了我课程本科版本的核心。广泛的在线材料[182]现在可以进行练习。Mathematica和Python笔记本电脑提供了几乎五十次综合练习的提示,使学生能够处理严重的新研究主题,例如保形不变性,地铁板凳蒙特卡洛,2D Turbulence和2d Turbulence and Jupiter的Great Red Spot,同时又可以接受良好的编程实践。讲义和指示促进了诸如五角大楼挫败和听到混乱之类的活动。现在进行了练习的答案键,我很遗憾地无法与那些教课程的人分享。最后,第一版的实力是在高级练习中进行的,它深入探讨了统计力学的微妙之处及其在科学各种领域的广泛应用。许多次级练习继续这种趋势,例如核合成以及时间,单词频率和ZIPF定律,大流行和细胞中的动力学校对。我再次感谢国家科学基金会和康奈尔大学物理系,使科内尔和我出色的研究生的活泼学术氛围成为可能;两者对于这项努力的成功至关重要。感谢他们掩盖了错误和模糊性的学生和读者。感谢我的小组成员和同事
