该技术说明证明了用于扩展微流蛋白质组学LC-MS分析的Zenotof 7600系统的性能和鲁棒性。该系统是连续运行的28周,而没有仪器清洁或维护,除了例行调整和校准外。鲁棒性,其中使用Zeno Swath DIAS方法分析了人类K562胰蛋白酶消化标准的5 ng和50 ng载荷的复制注射,以评估定量蛋白质组学性能。评估期包括从24-28周进行的加速鲁棒性测试,包括> 1,000个注射(每次注射0.5-1 ng之间的柱载荷)和> 1,020 µg的K562摘要,并注入了系统中,以模拟高通量蛋白瘤研究。在28周内分析了超过1200 µg的蛋白质消化系统。QC结果表明,系统性能在21周的测试期间保持稳定,并且已识别和量化的蛋白质组和前体的数量与变异系数(CVS)<20%一致。这些数据表明Zenotof 7600系统是
我们首先通过在不断增加的柔红霉素浓度下繁殖来生成多种耐药白血病细胞系(K562 细胞)。柔红霉素是蒽环类化疗药物之一,是 AML 诱导疗法的标准治疗方法。我们发现每种细胞系都通过相同的机制获得耐药性:诱导 ABCB1。4 利用生物信息学技术,我们还观察到耐药细胞平行上调了一种转录程序,该程序类似于在氨基酸缺乏或缺氧应激细胞中表达的转录程序。综合应激反应 (ISR) 代表了此类应激源的常见适应性途径,其输出由转录因子 (TF) ATF4(激活转录因子 4)协调。 5 我们发现在耐药性 K562 中上调最多的 TF 基因包括 ATF4 以及它的几个转录靶点( ATF3 ,激活转录因子 3; CEBPB , CCAAT 增强子结合蛋白 β; DDIT3 , DNA 损伤诱导转录本 3)和编码其结合伙伴的基因( JUN , Jun 原癌基因; JUNB , JunB 原癌基因; CEBPG , CCAAT 增强子结合蛋白 γ; CEBPB、ATF3 和 DDIT3 )。这些表达数据表明细胞应激、 ATF4 和 ABCB1 上调之间存在联系。
基因疗法有可能通过将治疗性遗传货物传递给疾病相关细胞来治疗疾病。对其广泛使用的一种局限性是缺乏较短的调节序列或启动子,该序列会差异地诱导靶细胞中传递的遗传货物的表达,从而最大程度地减少其他细胞类型的副作用。这种细胞类型特异性的启动子很难使用现有方法发现,需要手动策划或访问来自靶向和未靶向细胞的启动子驱动表达的大型数据集。基于模型的优化(MBO)已成为一种以自动化方式设计生物学序列的有效方法,最近已用于启动子设计方法。但是,这些方法仅使用昂贵的大型培训数据集进行了测试,并专注于为明显不同的细胞类型设计启动子,从而忽略了与与具有相似调节特征的紧密相关细胞类型设计启动子相关的复杂性。因此,我们引入了一个综合框架,用于利用MBO以数据有效的方式设计启动子,重点是发现类似细胞类型的启动子。我们将保守的目标模型(COM)用于MBO,并突出显示了实际的考虑因素,例如改善序列多样性,估算模型不确定性的最佳实践,并选择用于实验验证的最佳序列集。使用三种相对相似的血液癌细胞系(Jurkat,K562和THP1),我们表明我们的方法在实验验证了设计的序列后发现了许多新型细胞型特异性启动子。对于K562细胞,我们发现了一个启动子,该启动子的细胞类型特异性比最初用于训练模型的最初数据集高75.85%。
(E) 来自 StopPR 筛选的基因水平生长表型(计算为第 14 天每个基因绝对最强的两个 stop 287 epegRNA 的平均表型)由 CRISPRi 表型(如先前在 K562 细胞中确定)分组。54 个体 p 值分别为 288 1.13E-3(重度 vs. 中度)、4.00E-12(中度 vs. 轻度)和 < 2.62E-14(重度 vs. 轻度)来自 ANOVA 和 Tukey 事后分析(** 289 p < 0.01,*** p < 0.001)。标出了本分析中使用的全套 epegRNA 的中位数和四分位距 (IQR)。须线 290 延伸 1.5*IQR 超过上四分位数和下四分位数。虚线表示表型截止(Z < -2)。291
图 3. Neon NxT 重悬基因组编辑缓冲液在不同细胞类型和靶标的 CRISPR-Cas9 基因组编辑实验中的表现。靶标位点包括 Jurkat 和 K562 细胞的 ACTN、活化原代 T 细胞的 TRAC、HSC 的 B2M 和原代 NK 细胞的 AAVS1。细胞在 10 µL 或 100 µL 反应中进行电穿孔。(A) GFP 供体 DNA 敲入效率报告为 GFP 阳性细胞的百分比。(B) GFP 供体 DNA 敲入后的细胞活力。(C) 敲除效率报告为与未处理对照相比特定靶标位点的减少百分比。对于原代 NK 细胞,通过基因组切割检测 (GCD) 测定确定的插入/缺失效率 (%) 可作为敲除效率的指标。(D) 敲除细胞的电穿孔后活力。
甲醛 (FA) 是一种普遍存在的环境污染物,国际癌症研究机构将其列为 I 类人类致癌物。此前,我们报道过,甲醛会在接触的工人中诱发血液毒性和染色体非整倍性,并在实验动物的骨髓和造血干细胞中产生毒性。利用酵母中的功能性毒理基因组学分析,我们确定了调节真核 FA 细胞毒性的基因和细胞过程。虽然我们在酵母中验证了其中一些发现,但 FA 在人类细胞中的许多特定基因、通路和作用机制尚不清楚。在当前的研究中,我们应用了全基因组、功能丧失的 CRISPR 筛选来识别人类造血 K562 细胞系中 FA 毒性的调节剂。我们评估了 40、100 和 150 μM FA(分别为 IC10、IC20 和 IC60)的细胞易感性和抗性的遗传决定因素
Number Cas9-expressing cell lines 1, ATCC: CCL-185 A549 , adherent 2, Coriell Institute GM12878 , suspension 3, ATCC: CCL-247 HCT116 , adherent 4, ATCC: CRL-1573 HEK293 , adherent 5, ATCC: CCL-2 HeLa , adherent 6, ATCC: HB-8065 Hep G2 , adherent 7, ATCC: TIB-152 Jurkat , suspension 8, ATCC: CCL-243 K562 , suspension 9, ATCC: HTB-22 MCF7 , adherent 10, ATCC: HTB-132 MDA-MB-468 , adherent 11, ATCC: CRL-5807 NCI-H358 , adherent 12, ATCC: CRL-5872 NCI-H1437,遵守13,ATCC:CRL-5887 NCI-H1693,ADHERENT 14,ATCC:CRL-2577 RKO,RKO,RKO,辅助15,ATCC:CRL-2137 SK-N-AS,sk-n-as,ASCCC:CCL-235 SW837,ATCC:ATCC:ATCC:TIB:TIB:TIB:TIB:TIB:TIB:TIB:TIB:TIB:TIB:TIB:TIB-202: U-2 OS,附着
甲醛 (FA) 是一种普遍存在的环境污染物,国际癌症研究机构将其列为 I 类人类致癌物。此前,我们报道过,甲醛会在接触的工人中诱发血液毒性和染色体非整倍性,并在实验动物的骨髓和造血干细胞中产生毒性。利用酵母中的功能性毒理基因组学分析,我们确定了调节真核 FA 细胞毒性的基因和细胞过程。虽然我们在酵母中验证了其中一些发现,但 FA 在人类细胞中的许多特定基因、通路和作用机制尚不清楚。在当前的研究中,我们应用了全基因组、功能丧失的 CRISPR 筛选来识别人类造血 K562 细胞系中 FA 毒性的调节剂。我们评估了 40、100 和 150 μM FA(分别为 IC10、IC20 和 IC60)的细胞易感性和抗性的遗传决定因素
Class of 2022, Sheerin Alandejani , Ph.D., Molecular and Cellular Biology , Thesis Sponsor(s): Norin, Allen Thesis: Identification and Cytolytic Function of a Novel NK Cell Surface Receptor that Binds Haymaker on the K562 Leukemia Cell Line Last reported position: Researcher, Saudi National Guard Research Center, Riyadh, Saudi Arabia Class of 2022,埃文·奥斯汀(Evan Austin),博士,分子和细胞生物学,论文赞助商:贾格德(Jagdeo),贾里德(Jared),贾里德(Jared)论文:发光二极管的红光作为黑色素瘤疗法,作为一种黑色素疗法,最后报道了立场:居民,皮肤病学,纽约州纽约州布鲁克林,纽约州纽约州202222222222,ROBERT G.W.
重试是参与抗流量防御的细菌遗传元素。它们具有将RNA转录为多拷贝单链DNA(MSDNA)的独特能力,该DNA保持与其模板RNA的共价链接。回合与酵母中的CRISPR-CAS9相结合,已显示可通过同源性定向修复(HDR)提高精确基因组编辑的编辑效率。HDR编辑效率受到与传递编码所需突变的细胞外供体DNA相关的挑战的限制。在这项研究中,我们测试了回发物作为供体DNA产生MSDNA的能力,并通过绑定MSDNA引导HEK293T和K562细胞中的RNA来促进HDR。通过使用CRISPR-CAS9系统的多个细菌物种的反性重构重构,我们证明了HDR速率高达11.3%。总的来说,我们的发现代表了将基于反性的精确基因编辑扩展到人类细胞的第一步。
