影响溶解度的因素1。溶质的性质 - 离子比溶剂2。溶剂的性质 - 离子更可溶于极性水比非极性溶剂。3。温度变化,KNO 3,KCLO 3,AGNO 3,NANO 3在溶解水时吸收热量(Ca(OH)2释放在水中时。通过过滤确定物质的溶解度。溶质在特定温度下饱和溶剂的最大量的溶解度,在特定温度下以摩尔每dm³进行测量,因此,如果溶液是砂的溶液并用标准溶液与标准溶液中的过滤相关,则每个DM³的摩尔浓度也是溶解度。工作;溶液A为0.09摩尔HCl,通过在25°C下取25厘米的Na 2 Co 3的标准溶液获得溶液B,并用蒸馏水将其稀释至100厘米。25厘米的B完全用24.90厘米的A甲基橙作为指示。计算i。溶液B的浓度B在DM³II中的摩尔中。Na 2 Co 3在25°C下的溶解度,每dm³III。通过将饱和溶液的1dm³蒸发至干燥度获得的Na 2 Co 3的质量。解决方案;反应2HCl + Na 2 CO 3 2 NaCl + H 2 0 + CO 2摩尔比的等式:碱= 2:1 cava = Na Cbcb Nb cb = Cava NB VBNB CB = 0.090×0.02490×0.02490×1 0.025×2 = 0.0405moldm-- = 0.0405moldm-in = 0.0405moldm-ins v1 morc. 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25c 25cin of v1 mor v1 mor v1 mor v1 0.045molfm-³c1v1= C2V2
通过TAUC图获得的样品的带隙能量值为4.38 eV,具有半导体特性。1。简介石墨烯是一种令人兴奋的材料,具有不常见的两维骨骼,其SP2-杂交碳原子的单个单分子层的六边形结构[1,2]。石墨烯由于其独特的特性[3](例如优秀的电子[4,5,6],热力学和机械性能[7,8],因此引起了许多科学和技术领域的浓厚兴趣。石墨烯具有广泛的应用,例如透明导电?lms,?ELD效应晶体管(FET),水puri?阳离子,储能设备和传感器由于其出色的物理和化学特性而引起的[9、10、11、12、13]。?首先制造单层石墨烯纳米片是通过一种称为Scotch-tape方法的剥落技术[14]和外在化学蒸气沉积。但是,这些方法的缺点是它们不适用于工业生产中的植物制造[15]。使用机械去角质方法合成graphene纳米片,不适用于大规模生产。因此,从结构上与石墨烯结构相似的材料的大规模合成方法的发展吸引了越来越多的研究注意力[16]。GO是一种碳材料,显示出类似于石墨烯的化学,光学和电性能,因为它基于晶烯框架[18]。在1958年,Hummers和Offerman开发了一种合成GO的方法[23]。大规模的石墨去角质的最普遍,最有趣的方法之一是在化学反应中使用活性氧化剂来产生氧化石墨烯(GO),这是具有非导导性亲水性特性的碳材料[17]。然而,GO与石墨烯有所不同,因为牛基官能团(例如环氧基和氧基团)位于GO的基础平面上,少量的羧基和羧基存在于其薄片边缘[19,20,21]。go可以通过几种方法合成[22]; 1859年报道的Brodie方法是?r的第一个方法,其中烟雾3和kClo 3分别用作互嵌剂和氧化剂[1]。此方法使用h 2 so 4用纳米3和kmno 4作为石墨的氧化剂去除角质石墨。与Brodie和Staudenmaier的方法相比,Hummers方法具有一些优势。首先,kmno4作为强氧化剂有助于