转录增强子能够对后生动物的基因表达进行精确的时空控制。组蛋白 H3 赖氨酸 4 (H3K4me1) 的单甲基化富集是转录增强子的主要染色质特征。赖氨酸 (K) 特异性脱甲基酶 1A (KDM1A,也称为 LSD1) 是一种 H3K4me2/me1 脱甲基酶,可在小鼠胚胎干细胞 (mESC) 分化过程中使干细胞增强子失活。然而,其在未分化 mESC 中的作用仍不清楚。在这里,我们表明 KDM1A 在未分化和谱系定向细胞中都积极维持最佳增强子状态。KDM1A 占据了未分化 mESC 中的大部分增强子。增强子处的 KDM1A 水平与其底物 H3K4me2、H3K27ac 和增强子处的转录呈现明显的正相关性。在缺乏 Kdm1a 的 mESC 中,这些增强子中的大部分获得了额外的 H3K4 甲基化,同时伴有 H3K27 乙酰化增加以及增强子 RNA (eRNA) 和靶基因表达增加。在有丝分裂后的神经元中,KDM1A 的缺失会导致神经元活动依赖性增强子和基因的过早激活。总之,这些结果表明 KDM1A 是一种多功能的增强子调节器,并充当变阻器,通过平衡增强子处的 H3K4 甲基化来维持最佳增强子活性。
物质使用障碍是一种慢性疾病,也是世界各地导致残疾的主要原因。NAc 是介导奖励行为的主要大脑中枢。研究表明,接触可卡因与 NAc 中等棘神经元亚型 (MSN)、多巴胺受体 1 和 2 富集的 D1-MSN 和 D2-MSN 的分子和功能失衡有关。我们之前报道过,反复接触可卡因会在 NAc D1-MSN 中诱导转录因子早期生长反应 3 (Egr3) mRNA,而在 D2-MSN 中降低该mRNA。在这里,我们报告了在雄性小鼠中反复接触可卡因会诱导 Egr3 辅阻遏物 NGFI-A 结合蛋白 2 (Nab2) 的 MSN 亚型特异性双向表达的发现。使用 CRISPR 激活和干扰 (CRISPRa 和 CRISPRi) 工具结合 Nab2 或 Egr3 靶向的 sgRNA,我们模拟了 Neuro2a 细胞中的这些双向变化。此外,我们研究了雄性小鼠反复接触可卡因后 NAc 中组蛋白赖氨酸脱甲基酶 Kdm1a 、 Kdm6a 和 Kdm5c 的 D1-MSN 和 D2-MSN 特异性表达变化。由于 Kdm1a 在 D1-MSN 和 D2-MSN 中表现出双向表达模式,就像 Egr3 一样,我们开发了一种光诱导的 Opto-CRISPR-KDM1a 系统。我们能够下调 Neuro2A 细胞中的 Egr3 和 Nab2 转录本,并引起与我们在小鼠反复接触可卡因模型的 D1-MSN 和 D2-MSN 中观察到的类似的双向表达变化。相反,我们的 Opto-CRISPR-p300 激活系统诱导了 Egr3 和 Nab2 转录本并引起相反的双向转录调控。我们的研究揭示了可卡因作用中特定 NAc MSN 中 Nab2 和 Egr3 的表达模式,并使用 CRISPR 工具进一步模拟这些表达模式。
摘要:尽管基于关键致癌突变的生物靶向疗法在局部晚期或转移性甲状腺癌的治疗中取得了重大进展,但耐药性的挑战促使我们探索其他潜在有效的靶点。本文回顾了甲状腺癌中的表观遗传修饰,包括 DNA 甲基化、组蛋白修饰、非编码 RNA、染色质重塑和 RNA 改变,并更新了用于治疗甲状腺癌的表观遗传治疗药物,例如 DNMT(DNA 甲基转移酶)抑制剂、HDAC(组蛋白去乙酰化酶)抑制剂、BRD4(含溴结构域蛋白 4)抑制剂、KDM1A(赖氨酸脱甲基酶 1A)抑制剂和 EZH2(zeste 同源物 2 增强子)抑制剂。我们得出结论,表观遗传学有望成为甲状腺癌的治疗靶点,值得进一步进行临床试验。
组蛋白特异性脱甲基酶1(LSD1/KDM1A)在2004年首次被鉴定为一种表观遗传酶,能够脱甲基甲基化的组蛋白H3的特异性丝氨酸残基,即H3K4ME1/2和H3K9ME1/2 AS FADOF。它在许多类型的癌症(乳房,胃,前列腺,肝细胞和食管癌,急性髓样白血病等)中无处不在,导致了分化的障碍,并增加了细胞水平的增殖,迁移和侵入性。LSD1抑制剂可以分组为共价和非共价剂。 每个组都包含一些混合化合物,可以同时抑制LSD1(双重或多静脉组化合物)。 迄今为止,有9个LSD1抑制剂已经进入了血液学和/或固体癌症的临床试验。 Seven of them (tranylcypromine, iadademstat (ORY-1001), bomedemstat (IMG-7289), GSK-2879552, INCB059872, JBI-802, and Phenelzine) covalently bind the FAD cofactor, and two are non-covalent LSD1 inhibitors [pulrodemstat (CC- 90011)和Seclidemstat(SP-2577)]。 另一个基于TCP的LSD1/MAO-B双重抑制剂VA Fiferstat(ORY-2001)正在接受阿尔茨海默氏病和人格障碍的临床试验。 本综述总结了LSD1的结构和功能,其在癌症和非癌症中的病理意义以及与不同化学支架的LSD1共价和非共价抑制剂的鉴定,包括参与临床试验的抑制剂,以强调其潜在的潜在和选择性的抗抗癌药。LSD1抑制剂可以分组为共价和非共价剂。每个组都包含一些混合化合物,可以同时抑制LSD1(双重或多静脉组化合物)。迄今为止,有9个LSD1抑制剂已经进入了血液学和/或固体癌症的临床试验。Seven of them (tranylcypromine, iadademstat (ORY-1001), bomedemstat (IMG-7289), GSK-2879552, INCB059872, JBI-802, and Phenelzine) covalently bind the FAD cofactor, and two are non-covalent LSD1 inhibitors [pulrodemstat (CC- 90011)和Seclidemstat(SP-2577)]。另一个基于TCP的LSD1/MAO-B双重抑制剂VA Fiferstat(ORY-2001)正在接受阿尔茨海默氏病和人格障碍的临床试验。本综述总结了LSD1的结构和功能,其在癌症和非癌症中的病理意义以及与不同化学支架的LSD1共价和非共价抑制剂的鉴定,包括参与临床试验的抑制剂,以强调其潜在的潜在和选择性的抗抗癌药。
大多数肿瘤类型要么对激酶抑制剂没有反应,要么产生耐药性,这通常是由于癌细胞更广泛的信号传导回路中存在补偿性促生存途径。在这里,我们发现,通过将激酶网络重塑为赋予药物敏感性的拓扑结构,可以克服培养的原代急性髓系白血病 (AML) 细胞对激酶抑制剂的内在耐药性。我们确定了几种染色质修饰酶的拮抗剂,这些拮抗剂使 AML 细胞系对激酶抑制剂敏感。其中,我们证实赖氨酸特异性脱甲基酶 (LSD1;也称为 KDM1A) 的抑制剂重新连接了 AML 细胞中的激酶信号,从而增加了激酶 MEK 的活性,并广泛抑制了其他激酶和反馈回路的活性。因此,AML 细胞系和大约一半的原代人类 AML 样本对 MEK 抑制剂曲美替尼具有敏感性。具有 KRAS 突变和 MEK 通路活性高的原代人类细胞对 LSD1 抑制剂和曲美替尼顺序治疗反应最好,而具有 NRAS 突变和 mTOR 活性高的原代人类细胞反应较差。总体而言,我们的研究揭示了 MEK 通路是 AML 中对 LSD1 抑制剂产生耐药性的机制,并展示了一种调节激酶网络回路以潜在克服对激酶抑制剂治疗耐药性的方法。
肝细胞癌 (HCC) 是最常见的原发性肝癌,其发病率持续增长,是一个严重的医学问题。HCC 的发展是一个复杂的多步骤过程,最终会导致炎症损害、肝细胞坏死/再生和纤维化沉积 [1]。然而,HCC 的化疗治疗有局限性。目前用于一线全身治疗的药物,如索拉非尼和仑伐替尼,只能延长患者生存期几个月,主要是因为对这些疗法产生了耐药性 [2]。先前的研究报道了导致索拉非尼耐药 HCC 的潜在机制 [3]。核受体结合蛋白 2 (NRBP2) 可能通过影响 Bcl2 和 Akt 通路中存活蛋白的表达来增加 HCC 细胞化疗耐药性 [4]。组蛋白去甲基化酶赖氨酸特异性去甲基化酶 1 (KDM1A) 可通过激活 Wnt 信号增加 β -catenin 通路,从而降低 HCC 的治疗敏感性 [5]。此外,KRAS 通路加速 RAF/ERK 和 PI3K/AKT 信号传导,导致索拉非尼耐药 HCC 细胞增殖增加、凋亡抑制 [6]。多项研究表明,癌症干细胞 (CSC) 在癌症复发和对分子靶向疗法的主要耐药性中起着重要作用。最近的研究表明,具有干细胞样特征的 HCC 细胞,例如表达 CSC 表面标志 CD44、EpCAM、CD133 和 CD90,对索拉非尼诱导的细胞死亡表现出抗性 [7]。然而,索拉非尼耐药细胞获得癌症干性的机制仍不清楚 [8]。核因子红细胞衍生2样2 (Nrf2) 信号异常常见于多种癌症,包括 HCC,并参与肿瘤发生、肿瘤进展和化疗耐药性[9]。Nrf2 有助于维持氧化应激平衡,并可通过激活多种抗氧化基因的转录促进癌细胞在外来化合物毒素下的存活。Keap1/Nrf2 通路被认为是调节细胞防御氧化应激的主要信号级联。此外,Nrf2 通过驱动巨噬细胞极化为 M2 表型并促进癌细胞迁移来影响肿瘤微环境[10]。正常情况下,Keap1 在细胞质中分离并结合 Nrf2,导致蛋白酶体介导的下游基因降解[11]。在某些情况下,Nrf2 从 Keap1 中释放出来并转移到细胞核中,从而激活 ARE 介导的解毒酶基因表达,包括 HO-1 [ 12 ]。HO-1 参与调节 NRF2 靶向的 ATP 结合盒 (ABC) 外排转运体 (ABCC1、ABCG2 等) [ 13 ]。此外,Nrf2 诱导糖酵解基因的表达,并参与对癌细胞干细胞特性很重要的基因的转录调控,从而促进恶性肿瘤的发生 [14]。Nrf2 信号转导的阴暗面在癌症干细胞中也有描述。激活的 Nrf2 可减少 ROS 的产生并对药物产生抵抗性 [15]。作为转录因子,Nrf2 通过基因编辑技术促进了癌症干细胞的肿瘤生成 [16]。在本研究中,我们研究了肝癌细胞对索拉非尼耐药的机制,重点研究了 Nrf2 信号通路。我们检查了索拉非尼耐药的肝癌细胞
