∂ x ψ ( xj ) | j ⟩ d dτ ∂ x ψ ( xj ) = ∂ x ψ ( xj −1 ) −2∂ x ψ ( xj ) + ∂ x ψ ( xj +1 )
资格,期限和其他详细信息应授予博士学位。科学或工程学学位(最好在物理,化学或材料科学领域),或者提交了博士学位的最终提要。涉及X射线散射技术的研究经验的论文。将偏爱在涉及高压,低温或表面散射技术(例如反射率,gisaxs)方面具有经验的候选人。候选人(截至2024年10月15日,截至40岁以下)应具有良好的学术记录,并且对纳米科学技术有证明的兴趣。
kek为来自日本和国外的学术界和工业的研究人员带来了独特的科学机会,涵盖了加速器科学,粒子物理,核物理,宇宙学,材料科学和生命科学。Kek分别在其Tsukuba和Tokai校园内运营并开发了世界领先的电子和基于质子的加速器设施。使用来自这些设施的各种梁,Kek研究了自然的基本定律和材料功能特性的起源。SAC在KEK目前正在进行的大量活动印象深刻。这些活动的水平很高,通常在国际上具有竞争力。Superkekb和Belle II有望在2024年数据获取的亮度和探测器性能方面具有出色的开端。Superkekb长时间关闭后,LS1,碰撞于2024年2月重新启动。在关闭之前已经达到的高光度非常令人鼓舞,并将中期目标置于10 35 cm-2 s-1孔。随着这种持续改进,Belle II将保留在风味物理的前沿,在LS2之前,LS2的光度为2×10 35 cm -2 s -1的目标。它在与CERN的LHCB保持竞争性方面的成功将取决于提供的大量梁时。6×10 35 cm -2 s -1的亮度的长期目标仍然是一个重大挑战。SAC期待2024年预期的进度。,由于SuperKekb在KEK设施中具有最高的功率需求,因此实现这一目标将需要管理层大量的努力。国际社会兴奋地等待了Hyper-Kamiokande项目。在快速提取质子束中的进展非常令人印象深刻,显示出稳定的763kW操作。到2027年,质子束功率为1.2MW的目标,即Hyper-Kamiokande的开始。SAC还期待着有关近探测器开发的进度报告,其发展必须与光束发展相吻合。在ICFA国际发展团队(IDT)和日本HEP社区的鼓励下,Kek从MEXT获得了ILC技术网络(ITN)的五年资金,从而使ILC开发资金增加了一倍。这已经为欧洲的ILC提供了额外的支持。
KEKB 是一台 8x3.5 GeV 非对称电子-正电子对撞机,旨在实现质心能量为 10.58 GeV 的电子-正电子对撞。其使命是支持高能物理研究计划,研究 B 介子衰变中的 CP 破坏和其他主题。其目标光度为 10 34 cm~ 2 s~ 1 。KEKB 经日本政府批准,于 1994 年 4 月正式开始建设,为期五年。KEKB 的两个环(低能环 LER 用于 3.5 GeV 的正电子,高能环 HER 用于 8 GeV 的电子)将建在现有的 TRISTAN 隧道中,隧道周长为 3 公里。TRISTAN 的基础设施将得到最大程度的利用。利用较大的隧道宽度,KEKB 的两个环将并排建造。由于束流轨迹的垂直弯曲往往会增加垂直束流发射率,因此其使用量被最小化。