Belle II实验是一种粒子物理实验,旨在研究B介子的特性(含有底部夸克的重粒子)。belle II是Belle实验的继任者,目前正在日本伊巴拉基县Tsukuba的Kek的Superkekb Accelerator综合大楼进行委托。因此,对1不正确匹配。CRISPR-CAS9与基因工程有关。这是一项独特的技术,它使遗传学家和医学研究人员能够通过删除,添加或改变DNA序列的部分来编辑基因组的一部分。因此,对3不正确匹配。简单地说,区块链是一系列不变的数据记录,该记录由任何单个实体所没有的计算机集群管理。这些数据块中的每一个(即使用密码原理(即链)。区块链技术使市场参与者可以在没有中央记录的情况下跟踪数字货币交易。因此,对2正确匹配。因此,选项(b)是正确的答案。
作者的完整列表:Chizuru Sawabe;东京大学,高级材料科学系,Shohei Frontier Sciences Kumagai研究生院;东京大学,高级材料科学系Mitani,Masato;东京大学,国内科学研究生院伊西伊(Hiroyuki); Masakazu的Tsukuba Yamagishi大学;美国国家技术学院,福拉玛学院萨加亚马,哈吉姆;材料结构研究所科学,高能加速器研究组织Kumai,Reiji; Hiroyasu材料结构科学研究所SATO研究所高能加速器研究组织(KEK);里格库公司(Rigaku Corporation),Takeya,Jun;东京大学,高级材料科学系,俄克冈俄克冈大学;东京大学,高级材料科学系,边境科学学院
钨 (W) 因其高密度和极高的熔点而成为靶材的主要候选材料。钨本身具有一个关键缺点,即在室温下脆性(低温脆性)、再结晶脆性和辐照脆性。TFGR(增韧、细晶粒、再结晶)W-1.1%TiC 被认为是解决脆性问题的可行方案。我们在 2016 年开始与 KEK 和金属技术有限公司 (MTC) 合作制造 TFGR W-1.1%TiC。TFGR W-1.1%TiC 样品于 2018 年 6 月成功制造。结果,样品显示出轻微的弯曲延展性和 2.6 GPa 的断裂强度。 TFGR W-1.1%TiC于2018年9月28日纳入HRMT-48 PROTAD实验。冷却后将对辐照后的TFGR W-1.1%TiC进行辐照后检测。
使用多功能的精细pitchμ-thecky Makoto Motoyoshi 1,Junichi takanohashi 1,Takafumi Fukushima 2,Yasuo Arai 3和Mitsumasa koyanagi 2 1 1 1 1 1 1 tohoku-Microtec Co.,ltd。(T-Micro)(T-Micro)#203333, Aramaki, Aoba-ku, Sendai 980-8579, Japan E-mail: motoyoshi@t-microtec.com 2 Tohoku University, New Industry Creation Hatchery Center 6-6 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan 3 KEK, High Energy Accelerator Research Organization Institute of Particle and Nuclear Studies 1-1 Oho, Tsukuba,Ibaraki 305-0801,日本摘要 - 本文介绍了2.5μmx2.5μm的3D堆叠技术(indium)凸起连接,并带有粘合剂注射[1]。不是使用简单的测试设备,而是使用实际电路级测试芯片验证了该技术。发现,堆叠过程的完成会受到堆叠的每个层的布局模式的影响。为了最大程度地减少这些效果,我们优化了布局,过程参数和设备结构。
其中一项活动涉及“加速器、靶和辐照设施的屏蔽方面”(SATIF)。过去 20 年里已经举办了一系列研讨会:SATIF-1 于 1994 年 4 月 28-29 日在德克萨斯州阿灵顿举行;SATIF-2 于 1995 年 10 月 12-13 日在瑞士日内瓦的 CERN 举行;SATIF-3 于 1997 年 5 月 12-13 日在日本仙台的东北大学举行;SATIF-4 于 1998 年 9 月 17-18 日在田纳西州诺克斯维尔举行;SATIF-5 于 2000 年 7 月 17-21 日在法国巴黎的 NEA 举行;SATIF-6 于 2002 年 4 月 10-12 日在加利福尼亚州门洛帕克的 SLAC 国家加速器实验室 * 举行; SATIF-7 于 2004 年 5 月 17-18 日在葡萄牙萨卡韦姆 ITN 举行;SATIF-8 于 2006 年 5 月 22-24 日在韩国浦项的浦项加速器实验室举行;SATIF-9 于 2008 年 4 月 21-23 日在美国田纳西州橡树岭的橡树岭国家实验室 (ORNL) 举行;SATIF-10 于 2010 年 6 月 2-4 日在瑞士日内瓦的欧洲核子研究中心举行;SATIF-11 于 2012 年 9 月 11-13 日在日本筑波的高能加速器研究组织 (KEK) 举行;SATIF-12 于 2014 年 4 月 28-30 日在美国伊利诺伊州巴达维亚的费米国家加速器实验室 (FNAL) 举行。
外部通讯员: 阿贡国家实验室(美国):D Ayres 布鲁克海文国家实验室(美国):P Yamin 康奈尔大学(美国):D G Cassel DESY 实验室(德国):llka Regel、P Waloschek 费米国家加速器实验室(美国):Judy Jackson GSI 达姆施塔特(德国):G Siegert INFN(意大利):Barbara Gallavotti 北京高能物理研究所(中国):Tongzhou Xu 杰斐逊实验室(美国):Melanie O'Byrne JINR 杜布纳(俄罗斯):B Starchenko KEK 国家实验室(日本):A Maki Lawrence 伯克利实验室(美国):Christine Celata 洛斯阿拉莫斯国家实验室(美国):C Hoffmann NIKHEF 实验室(Pay-Bas):Paul de Jong 新西伯利亚研究所(俄罗斯):S Eidelman 奥赛实验室(法国):Anne-Marie Lutz PSI实验室(瑞士):P-R Kettle 卢瑟福阿普尔顿实验室(英国):Jacky Hutchinson 萨克雷实验室(法国):Elisabeth Locci IHEP,Serpukhov(俄罗斯):Yu Ryabov 斯坦福线性加速器中心(美国):N Calder TRIUMF 实验室(加拿大):M K Craddock
下一代直线对撞机应具有极小的发射度,以实现足够高的亮度。由于相互作用点处的光束尺寸非常小,高度约为十纳米,这些机器对地面运动非常敏感,从而导致不相关的机器组件紊乱。精确对准机器组件对于防止发射度稀释至关重要。1996 年,KEK 开始对电子/正电子直线对撞机的 C 波段(5712 MHz)射频系统的硬件研发。相关进展已在国际会议上报告 [1]。在本文中,我们将报告加速结构的大梁和支撑大梁的主动动子的设计。扩散性地面运动会破坏加速器元件的对准。为了补偿缓慢的地面运动,采用新理念开发了一种主动支撑动子。我们正在对动子进行长期使用质量测试。我们的新型移动器由空气弹簧和多层橡胶轴承 (MLRB) 组成,如图 2 所示。与机械千斤顶相比,空气弹簧的控制更平稳、更精细。我们使用 MLRB 来防止地震引起的支撑台快速弹出运动。移动器的详细设计和特性通过 LON 控制系统展示 [2, 3]。
1 捷克科学院物理研究所,Na Slovance 2,18221 布拉格 8,捷克共和国 2 查理大学数学与物理学院,V Holesovickach 2,布拉格,CZ18000,捷克共和国 3 伯明翰大学物理与天文学院,伯明翰 B152TT,英国 4 国立微电子中心(IMB-CNM,CSIC),UAB-Bellaterra 校区,08193 巴塞罗那,西班牙 5 粒子物理研究所,IFIC/CSIC-UV,C/Catedrático José Beltrán 2,E-46980 帕特尔纳,瓦伦西亚,西班牙 6 约瑟夫·斯特凡研究所实验粒子物理系,Jamova 39,SI-1000 卢布尔雅那,斯洛文尼亚 7 圣克鲁斯大学粒子物理研究所 (SCIPP)加利福尼亚大学圣克鲁斯分校,CA 95064,美国 8 TRIUMF,4004 Wesbrook Mall,温哥华,BC V6T 2A3,加拿大 9 西蒙弗雷泽大学物理系,8888 University Drive,本那比,BC V5A 1S6,加拿大 10 筑波大学纯粹与应用科学研究所,1-1-1 Tennodai,筑波,茨城 305-8571,日本 11 多伦多大学物理系,60 Saint George St.,多伦多,安大略省 M5S1A7,加拿大 12 高能加速器研究组织 (KEK) 粒子与核研究所,1-1 Oho,筑波,茨城 305-0801,日本 ∗ 主要作者,电子邮件:vera.latonova@cern.ch,† 替补演讲人,电子邮件:jiri.kroll@cern.ch
a 捷克科学院物理研究所,Na Slovance 2, 18221 Prague 8,捷克共和国 b 查理大学数学与物理学院,V Holesovickach 2, Prague, CZ18000,捷克共和国 c 伯明翰大学物理与天文学院,伯明翰 B152TT,英国 d 国立微电子中心(IMB-CNM,CSIC),Campus UAB-Bellaterra,08193 Barcelona,西班牙 e 粒子物理研究所,IFIC/CSIC-UV,C/Catedr´atico Jos´e Beltr´an 2, E-46980 Paterna,瓦伦西亚,西班牙 f 约瑟夫·斯特凡研究所实验粒子物理系,Jamova 39,SI-1000 Ljubljana,斯洛文尼亚 g加利福尼亚大学圣克鲁斯分校,美国加利福尼亚州 95064 h 西蒙弗雷泽大学物理系,加拿大不列颠哥伦比亚省本那比市 8888 University Drive V5A 1S6 i TRIUMF,加拿大不列颠哥伦比亚省温哥华市 4004 Wesbrook Mall V6T 2A3 j 筑波大学纯粹与应用科学研究所,日本茨城县筑波市 Tennodai 1-1-1 305-8571 k 多伦多大学物理系,加拿大安大略省多伦多市 Saint George St. 60 M5S1A7 l 高能加速器研究组织 (KEK) 粒子与核研究所,日本茨城县筑波市 Oho 1-1 305-0801
AI Administrative Instruction CO 2 eq Carbon Dioxide Equivalent DH District Heating DSO Distribution System Operator EC European Commission ECS Energy Community Secretariat ECT Energy Community Treaty EE Energy Efficiency ENTSO_E European Network of Transmission System Operators for Electricity ERO Energy Regulator Office ETS Emissions Trading System EU European Union FS Feasibility Study GWh Gigawatt Hour ICMM Independent Commission for Mines and Minerals KEDS Kosovo Electricity Distribution Company KEEA Kosovo Energy Efficiency Agency KEEAP Kosovo Energy Efficiency Action Plan KEK Kosovo Energy Corporation - Public Electricity Generator KESCO Kosovo Electricity Supply Company KOSTT Kosovo Transmission System and Market Operator KREAP Kosovo Renewable Energy Sources Action Plan Ktoe Kiloton of Oil Equivalent LNG Liquified Natural Gas LPG Liquefied Petroleum Gas LULUCF Land use, land-use change and forestry MW el Megawatts (electric) MWh Megawatt Hour MW th Megawatts (thermal) NERP National Emissions Reduction Plan NOx Nitrogen Oxides PMO Prime Minister's Office RES Renewable Energy Sources SAA Stabilization and Association Agreement Sox Sulphur Oxides TAP Trans Adriatic Pipeline TSO Transmission System Operator UNFCCC United Nations Framework Convention on Climate Change USS Universal Service Supplier
