直接靶向与染色质相关蛋白的靶向越来越多地成为癌症治疗的潜在治疗策略。在这篇综述中,我们讨论了一个突出的例子,即针对Menin – KMT2A相互作用的小分子抑制剂。目前正在研究这些分子在临床试验中,并显示出巨大的希望。我们介绍了Menin – KMT2A蛋白复合物的独特特异性,用于驱动发育和白血病基因表达的一小部分基因的转录调节。我们回顾了染色质蛋白相关的KMT2A复合物,以及与Menin和Kmt2a之间的蛋白质 - 蛋白质相互作用相互作用,对不同类型的蛋白质相互作用,但最大程度地是癌症的癌症,但最大程度地是我最多的癌症,但最多的癌症,但最多的癌症,但最大程度地是癌症,但最大程度地是癌症。 (AML)。我们还总结了梅宁抑制剂及其对染色质的影响。最后,我们讨论了AML患者的临床试验以及最近发现耐药的MENIN突变体的临床试验的有希望的早期结果,这些突变体验证了Menin作为治疗靶点,但也可能带来治疗性挑战。
结果:在这里,我们报告了KMT2A :: AFF1和KMT2A :: MLLT3融合基因依赖性基因的下调Smad1(TGF-B信号轴转录因子)。SMAD1表达在大多数AML患者样品和包含两个融合基因KMT2A :: AFF1和KMT2A :: MLLT3的细胞系中丢失。SMAD1表达的丧失是通过将两个KMT2A融合基因引入造血干细胞和祖细胞中的。SMAD1的损失与具有KMT2A :: AFF1和KMT2A :: MLLT3的测试细胞中SMAD1启动子的H3K4me3水平显着降低。Smad1在具有KMT2A :: AFF1融合基因的细胞中的表达影响了细胞在体外的体外和影响kmt2a :: aff1细胞系MV4-11的体外植入。在MV4-11细胞中Smad1表达引起Hoxa9和Meis1的下调,这是通过TGF-B刺激加强的。 此外,在MV4-11细胞中,SMAD1的存在敏化细胞对TGF-B介导的G1暂停。在MV4-11细胞中Smad1表达引起Hoxa9和Meis1的下调,这是通过TGF-B刺激加强的。此外,在MV4-11细胞中,SMAD1的存在敏化细胞对TGF-B介导的G1暂停。
尽管赖氨酸甲基转移酶2a(KMT2A)基因重排,代表急性髓样白血病(AML)中常见的致癌事件,但KMT2A扩增的频率较小,并且与独特的临床和遗传特征相关。我们对三名与KMT2A基因扩增相关的AML患者进行了回顾性分析,并意识到了文献综述。所有病例都是男性,中位年龄为65岁。其中两个已经接受了以前的疗法。骨髓的Aspi速率涂片显示出明显的发育异常,并在红细胞系列中具有细胞质液泡。在所有情况下,细胞遗传学研究均显示出复杂的核型和原位杂交(FISH)分析(FISH)分析显示所有患者的DEL(5Q)和TP53基因的缺失和两名患者的DEL(7Q)。在两名患者中进行了下一代测序(NGS)面板,在这些情况下,建立了TP53的双重变化。所有患者均对治疗难治性,并且出现KMT2A扩增后的74天生存期。总而言之,我们的结果表明,我们的KMT2A扩增患者具有文献中描述的相同的临床和遗传特征:先前治疗,高龄,发育异常的迹象,具有频繁空泡,复杂的Karyotype和TP53突变的患者中存在扩增。
被诊断患有 KMT2A 重排 ( KMT2A -r) 急性淋巴细胞白血病 (ALL) 的 1 岁以下婴儿,尽管接受了强化治疗,但仍面临无法缓解、复发和因白血病死亡的高风险。婴儿 KMT2A -r ALL 母细胞的特征是 DNA 高甲基化。临床前研究表明,DNA 甲基转移酶抑制剂的表观遗传启动会增加化疗的细胞毒性。儿童肿瘤学组试验 AALL15P1 测试了在第 6 天开始化疗之前立即进行 5 天阿扎胞苷治疗的安全性和耐受性,在四个诱导后化疗疗程中,适用于新诊断为 KMT2A -r ALL 的婴儿。治疗耐受性良好,31 名可评估患者中只有 2 名 (6.5%) 出现剂量限制性毒性。外周血单核细胞全基因组亚硫酸盐测序表明,在接受阿扎胞苷治疗 5 天后,87% 的样本的 DNA 甲基化降低。无事件生存率与之前对新诊断婴儿 ALL 的研究结果相似。阿扎胞苷是安全的,可降低 KMT2A -r ALL 婴儿外周血单核细胞的 DNA 甲基化,但加入阿扎胞苷以增强细胞毒性不会影响生存率。Clinicaltrials.gov 标识符:NCT02828358。
• 我们进行了一项单中心回顾性队列研究,以调查 KMT2A 突变对在俄亥俄州克利夫兰诊所基金会接受治疗的 AML 成年患者(≥18 岁)总体生存率 (OS)、无事件生存率 (EFS) 和临床反应率的影响。 • 根据 KMT2A 状态对患者进行分类:KMT2A 野生型 (wt-KMT2A)、re-KMT2A、SNV-KMT2A 和 KMT2A-PTD。 • 突变的 KMT2A (mt-KMT2A) 包括 re-KMT2A、SNV-KMT2A 和 KMT2A-PTD。re-KMT2A 由细胞遗传学、FISH 或 RNA 融合下一代测序 (NGS) 面板确定。 • 使用 DNA NGS 面板确定 SNV-KMT2A,使用 RNA 融合 NGS 面板确定 KMT2A-PTD。 • OS 计算时间为诊断日期至死亡日期或最后一次随访日期(以较早者为准)。 • EFS 计算时间为治疗开始日期至首次出现难治性疾病、疾病进展或因任何原因死亡的日期。 • 使用 Kaplan-Meier 方法估计生存概率,使用对数秩检验评估组间差异。多变量回归已针对混杂因素进行调整 • 多变量回归已针对混杂因素进行调整。
方法 AUGMENT-101 是一项 I/II 期、开放标签、剂量递增和扩展的 revumenib 研究,在五个国家的 22 个临床地点进行(Clinical-Trials.gov 标识符:NCT04065399)。我们报告了 II 期注册启用部分的结果。招募年龄 ≥ 30 天、患有 R/R KMT2Ar 急性白血病或 AML 和核仁磷蛋白 1 (NPM1) 突变的个人。Revumenib 每 12 小时给药一次,剂量为 163 毫克(如果体重 <40 公斤,则为 95 毫克/米 2),与强效细胞色素 P450 抑制剂一起,28 天为一个周期。主要终点是完全缓解 (CR) 或 CR 伴部分血液学恢复 (CR 1 CRh) 的比例和安全性。在预先指定的中期分析中,对所有接受 KMT2Ar 治疗的患者进行了安全性评估;对集中确认的 KMT2Ar 患者进行了疗效评估。试验的单独 NPM1 队列正在进行中。
摘要:Menin抑制剂是目前正在临床开发中的新型和有前途的药物,其针对HOX/MEIS1转录程序,这对于在组蛋白赖氨酸N-甲基转移酶2A重新培训(KMT2AR)和NPM1-氧化(NPM1)氧化(NPM1M1M1M1MUT)尖锐leukemias中至关重要。这种新型药物的作用机理是基于MENIN – KMT2A复合物的破坏(由染色质重塑蛋白组成),从而导致表达KMT2A或突变NPM1的AML细胞的分化和凋亡。迄今为止,这种新的药物已在I阶段和II期临床试验中进行了测试,无论是单独的,并与协同药物结合使用,在经过预先治疗的急性白血病患者的缓解率和安全性方面,显示出令人鼓舞的结果。在这篇简短的综述中,我们总结了有关梅宁抑制剂的关键发现,重点介绍了有关急性髓细胞性白血病治疗的作用机理和初步的临床数据,尤其是这种有希望的新药物,尤其是Revumenib和Ziftomenib。
摘要。背景/目标:在某些白血病患者中报告了组蛋白 - 赖氨酸N-甲基转移酶2a基因(KMT2A)与Rho鸟嘌呤核苷酸交换因子12基因(ARHGEF12)的融合,均在某些白血病患者中融合。我们报告了在治疗带有拓扑异构酶II抑制剂的小儿急性髓样白血病(AML)期间发生的KMT2A-ARHGEF12融合,导致继发性急性淋巴细胞性白血病(全部)。材料和方法:对最初诊断为AML的女孩的骨髓细胞进行了多次遗传分析。结果:在使用AML诊断时,发现T(9; 11)(P21; Q23)/KMT2A-MLLT3遗传异常。化学疗法导致AML临床缓解后,发现在11q23中发现了2 MB缺失,产生了KMT2A-ARHGEF12融合基因。当患者后来出现B谱系时,检测到A T(14; 19)(Q32; Q13),一个染色体9染色体的丢失和KMT2A-ARHGEF12。结论:患者在骨髓细胞中依次开发了AML,所有患者均具有三个白血病特异性基因组异常,其中两个是KMT2A的重态。
forn yuen stessman ruzo 41%50%37%41%44%adcy3 adcy3 adcy5 adnp adnp adnp adnp adnp adnp agap2 agap2 agap2 akap9 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ank2 ankrd11 ankrd11 ankrd11 ankrd11 ankrd11 ankrd11 ap2s1 ariD1b ARID1B ARID1B ARID1B ARID1B Ash1l Ash1l Ash1l Ash1l Asxl3 ASXL3 ASXL3 Babrb3 Bcl11a Bcl11a Bcl11a BRIN2B BTRC CACNA1E C16ORF13 CELF4 CACNA2D3 CACNA2D3 CACNA2D3 CASK CAPN12 CDC42BPB CCSER1 CHD2 CHD2 CHD2 CHD2 CHD2 CHD8 CHD8 CHD8 CHD8 CHD8 CHD8 CHD8 CIC CIC CIC CMPK2 CLASP1 CLASP1 COL4A3BP CNABP CNABP CTNNNB1 CTNNB1 CTNNB1 CTNNB1 CTNB1 CTNBP2 CUL3 CUL3 CUL3 DEAF1 DDX3X DIP2C DDX3X DDX3X DDX3X DNMT3A DNMT3A DNMT3A DNMT3A DIP2A DNMT3A DPYSL2 DPYSL2 DLGP4 DLGAP4 DLGAP1 DSCAM DSCAM DSCAM DSCAM DSCAM DSCAM DSCAM DSCAM DSCAM DSCAM DOCK8 DSCAM DYSCAM DYSC1H1 DSCAM DSCAM DSCAM DRKAM DYRK1A DYRK1A DYRK1A dyrk1a dyrk1a dyrk1a EIF3G FMR1 FAM47A ERBIN ETFB FAM98C FOXP1 FOXP1 FOXP1 FOXP1 FOXP1 FOXP1 FOXP1 FOXP2 GABRB3 GFAP GFAP GIGYF1 GIGYF1 GIGYF1 GIGYF1 GIGYF2 GIGYF1 GNAI1 GNAI1 GNAI1 GRIN2B Grin2B Gria1 Irf2BPL KDM6A HIVEP3 GRIN2B KCNQ3 ILF2 ILF2 KDM5B ITPR1 INTS6 KDM6B Kdm6B Kdm6B Kiaa0232 Kiaa2022 Katnal2 Katnal2 KMT2A KMT2A KDM5B KMT2C KMT2C KMT2C KMT2C KMT2E KMT2E KMT2E KMT5B KMT5B KMT5B KMT5B KMT5B KMT5B LDB1 LAMC3 MFRP MAP1A MECP2 MECP2 MECP2 MECP2 MECP2 MLANA MBD5 MED13L MED13L MED13 MED13 MED13L div>
彼得·麦卡勒姆癌症中心和澳洲维克的皇家墨尔本医院;新南威尔士州新南威尔士州皇家王子阿尔弗雷德医院;新南威尔士州皇家北岸医院;澳洲昆士兰州公主亚历山德拉医院;澳洲维克莫纳什医院;澳洲华盛顿州菲奥娜·斯坦利医院;澳洲维克大学吉朗大学医院;澳洲维克的阿尔弗雷德医院;澳大利亚皇家阿德莱德医院;新南威尔士州新南威尔士州的Cal髅地医院;澳洲维克黄金海岸医院;新南威尔士州威斯特米德医院;新南威尔士州康科德医院;华盛顿州华盛顿州查尔斯·盖尔德纳爵士医院;德克萨斯大学医学博士安德森癌症中心,美国德克萨斯州; ACRF翻译研究实验室,维克,澳洲;
