(A-B)示意图,表明RTK/SHP2介导的MAPK途径重新激活是KRAS G12C抑制剂耐药性的关键机制。将SHP2抑制剂与KRAS G12C抑制剂铅组合在MAPK途径活性的最大下调(C)KRAS G12C抑制剂R MIA PACA-2细胞系中,通过JAB-21822和JAB-3312的组合在不同的浓度下,用JAB-21822和JAB-3312组合评估了SYSS SYSIS抑制作用(JAB-21822和JAB-3312)的抑制作用(D)。 KRAS G12C抑制剂R NCI-H358细胞系(E)的JAB-3312组合(E)log 2折叠NCI-H358细胞中基因表达的变化,具有对KRAS G12C抑制剂的耐药性,通过RNaseq(F)获得了KRAS G12C抑制剂的耐药性,而NCI-H358细胞中的NCI-H358细胞中的基因表达水平
摘要:KRAS 是人类最常见的致癌基因之一,但生产直接抑制剂的协同努力大多以失败告终,使 KRAS 获得了“无药可用”的称号。最近生产亚型特异性抑制剂的努力取得了更大的成功,几种 KRAS G12C 抑制剂已进入临床试验,包括 adagrasib 和 sotorasib,它们已显示出对患者有效的早期证据。从其他 RAS 通路抑制剂的经验教训表明,这些药物在体内的效果将因耐药性的产生而受到限制,G12C 抑制剂的临床前研究已发现这方面的证据。在这篇综述中,我们讨论了 G12C 抑制剂的当前证据、对 G12C 抑制剂的耐药机制以及克服它们的潜在方法。我们讨论了联合治疗的可能靶点,包括 SHP2、受体酪氨酸激酶、下游效应物和 PD1/PDL1,并回顾了正在进行的针对这些抑制剂的临床试验。
癌细胞对治疗压力的适应使肿瘤恶性进展,最终逃避程序性细胞死亡并产生耐药性疾病。癌症适应的一种常见形式是非遗传改变,它利用癌细胞中已经存在的机制,不需要基因改造,而基因改造也会导致耐药机制。上皮-间质转化 (EMT) 是适应性药物耐药和随之而来的癌症治疗失败的最常见机制之一,其由表观遗传重编程和 EMT 特异性转录因子驱动。癌症治疗的最新突破是 KRAS G12C 抑制剂的开发,它通过敲除致癌驱动因素的独特替代,预示着治疗时代的到来。然而,这些针对 KRAS G12C 的高选择性药物,例如 FDA 批准的 sotorasib (AMG510) 和 adagrasib (MRTX849),不可避免地会遇到多种耐药机制。除了 EMT 之外,癌细胞还可以劫持或重新连接生理上控制细胞增殖、生长和分化的复杂信号网络,以促进恶性癌细胞表型,这表明可能需要抑制多个相互关联的信号通路来阻止 KRAS G12C 抑制剂治疗中的肿瘤进展。此外,癌细胞的肿瘤微环境 (TME),例如肿瘤内滤过淋巴细胞 (TIL),对免疫逃逸和肿瘤进展有重大影响,这表明治疗方法不仅针对癌细胞,还针对 TME。揭示和靶向癌症适应有望深入了解肿瘤病理生物学机制并改善 KRAS G12C 突变癌症的临床管理。本综述介绍了导致对 KRAS G12C 抑制剂产生耐药性的非遗传适应的最新进展,重点关注致癌通路重新连接、TME 和 EMT。
提高对KRAS G12C靶向疗法的抗肿瘤反应的抽象努力从利用组合方法中受益。在这里,我们将SOS1-KRAS相互作用抑制剂BI-3406诱导的抗肿瘤反应与KRAS G12C抑制剂(KRAS G12C I)与KRAS G12C i单独或与SHP2或EGFR抑制剂合并的抗肿瘤反应。在肺癌和结直肠癌(CRC)模型中,BI-3406加上KRAS G12C I诱导抗肿瘤反应比单独使用KRAS G12C I观察到的抗肿瘤反应更强,并且与其他组合相比。这种增强的抗肿瘤反应与RAS-MAPK信号的更强,更扩展的抑制作用有关。重要的是,BI-3406加KRAS G12C I治疗延迟了CRC和肺癌模型中获得的Adagrasib耐药性的出现,并且与KRAS G12C I-抗性CRC模型中抗增殖活性的重新建立有关。我们的发现位置KRAS G12C加SOS1抑制疗法是治疗KRAS G12C肿瘤的有前途的策略,以及解决对KRAS G12C I的获得性抗性。
KRAS G12C突变发生在大约14%的腺癌中,在0.5至4%的鳞状NSCLC中发生。该突变会损害GTPase活性和GTP - 溶解度,从而导致活性,GTP结合(ON)状态增加。虽然第一代KRAS G12C抑制剂表现出临床反应,但许多癌症没有反应,并且获得的抗性很常见。
癌蛋白 - 靶向宠物示踪剂,并评估其转化能力用于非小细胞肺癌(NSCLC)和结直肠癌(CRC)患者的KRAS G12C突变非侵入性成像。方法:[18 f] PfPMD是根据AMG510(Sotorasib)合成的,通过将聚乙二醇链连接到喹唑啉酮结构中。通过细胞摄取,内在化和阻断(H358:KRAS G12C突变; A549:非KRAS G12C突变)研究,通过细胞摄取,内在化和阻断来检验[18 F] PFPMD的结合选择性和成像潜力。招募了五名健康志愿者,以评估[18 F] PFPMD的安全性,生物分布和剂量测定法。随后,有或没有KRAS G12C突变的14例NSCLC或CRC患者进行了[18 F] PFPMD和[18 F] FDG PET/CT成像。测量了[18 f] pfpmd的肿瘤摄取的SUV最大,并在有KRAS G12C突变的患者中进行了比较。结果:[18 F] PFPMD以较高的放射化学产率,放射化学纯度和稳定性获得。蛋白质结合测定法显示[18 F] PFPMD选择性地结合了KRAS G12C蛋白。[18 F] PFPMD在H358中的摄取量明显高于A549,并且通过AMG510进行预处理(H358 vs. A549:3.22%6 0.28%vs. 2.50%vs. 2.50%6 0.25%6 0.25%,p,0.05; block:2.06%6 0.13%,0.13%,p,p,0.22%,pfpmd。在PET成像的承重小鼠中观察到了相似的结果(H358 vs. A549:3.93%6 0.24%vs. 2.47%6 0.26%注射剂量/G,P,0.01; Block:2.89%6 0.29%0.29%注射剂量/G; P,0.05)。全身有效剂量与[18 F] FDG的剂量相当。[18 f] pFPMD在人类中是安全的,主要由胆囊和肠道排出。[18 F] PFPMD在KRAS G12C突变肿瘤中的积累显着高于非KRAS G12C突变肿瘤(SUV最大:3.73 6 0.58 vs. 2.39 6 0.22,P,0.01)在NSCLC和CRC患者中。结论:[18 F] PFPMD是NSCLC和CRC患者中KRAS G12C突变状态无创筛查的安全且有前途的宠物示踪剂。
开发出新的替代疗法。多中心临床试验的令人满意的结果促使 KRAS G12C 抑制剂疗法最近获得批准。尽管 KRAS G12C 等位基因特异性药物极大地改善了 KRAS G12C 肿瘤患者的临床前景,特别是肺腺癌患者,其中 KRAS G12C 突变体与其他 KRAS 突变相比最为普遍,但必须克服不可避免的挑战,例如内在和获得性耐药性,以最大限度地发挥 KRAS G12C 抑制剂疗法的功效。最近的研究表明,补偿性信号通路(例如 PI3K/AKT/mTOR 通路)和表观遗传重编程(例如上皮间质转化 (EMT))是介导对 KRAS G12C 抑制剂的内在耐药性的常见机制,而当癌细胞获得 KRAS 蛋白的二次突变,从而削弱 KRAS G12C 抑制剂的共价结合时,可能会产生获得性耐药性和随之而来的复发性疾病。识别和靶向 KRAS G12C 抑制剂耐药机制有望为有效治疗 KRAS G12C 突变型癌症患者提供新策略。
ORR,总体反应率PFS,无进展生存期;资料来源:来自注册ph2代码break 100&ph3代码折断200的Sotorasib数据在2022 EMSO会议上提出的结果; Adagrasib来自Krystal-1结果的数据在2022年ASCO会议上介绍; GDC-6036 2022 WCLC会议的数据;从产品标签中获取的模拟数据
利益冲突声明:ASA 获得了 Karyopharm、EISAI、Jannsen 和 Rhizen 的资助。ASA 获得了 Karyopharm Therapeutics Inc. 的演讲费。ASA 是 GLG 和 Guidepoint 的理事会成员。MN 获得了 AstraZeneca、Caris Life Sciences、Daiichi Sankyo、Novartis、EMD Serono、Pfizer、Lilly 和 Genentech 的咨询费,获得了 AnHeart Therapeutics 的差旅支持,并且是 Takeda、Janssen、Mirati 和 Blueprint Medicines 的演讲者。
KRAS是人类癌症中最常见的癌基因,大约25%的NSCLC发生了激活突变。,KRAS G12C大约在腺癌的14%和0.5至4%的鳞状NSCLC中发生。该突变会损害GTPase活性和GTP - 溶解度,从而导致活性,GTP结合(ON)状态增加。虽然第一代KRAS G12C抑制剂表现出临床反应,但许多癌症没有反应,并且获得的耐药性很常见。
