(DUFF) 实验被设想为一个简单的步骤,以证明可以采取积极的步骤,无论多小,来推动空间裂变能源的发展。DUFF 使用现有的反应堆、简单的热管、基本的热交换器和现有的斯特林转换器来发电。DUFF 实验在首次设想后不到 6 个月就以不到 100 万美元的价格完成。采用斯特林技术的千瓦反应堆 (KRUSTY) 被设想为成功部署空间反应堆的下一步。KRUSTY 是 5 千瓦(热)千瓦空间反应堆的原型核动力测试。2 千瓦反应堆概念利用热管从固体燃料块传输裂变能,旨在用于简单的低功率 [1 至 10 千瓦(电)] 空间和地面电力系统。 KRUSTY 的设计目标是在 3 年、不到 2000 万美元的项目成本限制内尽可能地原型化。本文是本期《核技术》特刊中八篇记录 KRUSTY 的论文之一
摘要 — 千瓦级项目由美国宇航局的空间技术任务理事会/游戏规则改变者发展计划于 2015 财年发起,旨在展示小型空间裂变动力在相关环境(技术就绪水平 5)下的子系统级技术就绪情况,以满足空间科学和载人探索的能源需求。千瓦级项目的核心是采用斯特林技术的千瓦级反应堆 (KRUSTY) 测试,该测试包括开发和测试 1 千瓦(电)级裂变动力系统 (FPS) 的地面技术演示器。KRUSTY 将开发和验证的技术可扩展至 1 至 10 千瓦(电)的空间 FPS,从而可以为载人探索提供模块化地面 FPS,以及未来潜在的更高功率的深空科学任务。KRUSTY 演示由美国宇航局和美国能源部国家核安全局共同资助。国家关键实验研究中心装置装配设施的KRUSTY演示于2018年第一季度完成。
裂变发电是一项很有前途的技术,它已被提议用于未来的几种太空用途。它正在考虑用于旨在探索太阳系甚至更远地方的大功率任务。当 NASA 的 1 kWe 千瓦斯特林技术反应堆 (KRUSTY) 原型于 2018 年完成全功率核试验时,空间裂变发电取得了巨大进展。它的成功激发了主要太空国家之间新一轮的研究竞争。本文回顾了 Kilopower 反应堆和 KRUSTY 系统设计的发展。它总结了目前正在考虑将裂变反应堆作为动力和/或推进源的任务。这些项目包括访问木星和土星系统、凯龙星和柯伊伯带天体;海王星探索任务;以及月球和火星表面基地任务。这些研究表明,对于功率水平达到~1 kWe的任务,裂变电推进(FEP)/裂变动力系统(FPS)在成本方面优于放射性同位素电推进(REP)/放射性同位素动力系统(RPS),而当功率水平达到~8 kWe时,它具有质量更轻的优势。对于飞行距离超过~土星的任务,含钚的REP可能在成本上无法接受,因此FEP是唯一的选择。地面任务更喜欢使用FPS,因为它满足10's kWe的功率水平,并且FPS大大拓宽了可能的着陆点的选择范围。按照目前的情况,我们期待在未来1-2年内实现旗舰级的裂变动力太空探索任务。
一个小空间反应堆hyun chul lee,泰·杨(Tae Young Han),洪锡克林·韩国原子能研究所(989-111 Daedeok-daero),韩国Yuseong-gu,韩国Daejeon,韩国Daedeok-daero * hyun chul lee lee 简介航天器的电源系统在深空探索中起关键作用,也是唯一适用于木星以外或太阳系以外的航天器探索的唯一适用的选择[1]。 自SNAP-10A于1965年推出以来,已经开发了许多用于航天器电源的小裂变反应堆。 最近,美国(美国)国家航空航天局(NASA)和洛斯阿拉莫斯国家实验室(LANL)进行了深空任务,其中具有高度富集的铀(HEU)被用作燃料[2]。 在韩国原子能研究所(KAERI)中研究了一个小型热反应器,该反应堆正在研究深空探测器[1]。 对照杆(CR)系统被采用是研究中的反应器的反应性控制系统,并且设计了研究中的反应器,以使其在浸入水,湿砂或干砂中时保持亚临界,无论它们没有或较小的损坏或造成的损坏或较小的损坏(如发射或冷却剂损坏),或者是重大的损坏(反射杆,并且缺少对照杆)。 然而,在最严重的事故场景中,具有控制杆系统的反应器不可避免地会变得超临界,在这种情况下,控制杆缺失而反射器中没有任何损坏[1]。hyun chul lee lee 简介航天器的电源系统在深空探索中起关键作用,也是唯一适用于木星以外或太阳系以外的航天器探索的唯一适用的选择[1]。 自SNAP-10A于1965年推出以来,已经开发了许多用于航天器电源的小裂变反应堆。 最近,美国(美国)国家航空航天局(NASA)和洛斯阿拉莫斯国家实验室(LANL)进行了深空任务,其中具有高度富集的铀(HEU)被用作燃料[2]。 在韩国原子能研究所(KAERI)中研究了一个小型热反应器,该反应堆正在研究深空探测器[1]。 对照杆(CR)系统被采用是研究中的反应器的反应性控制系统,并且设计了研究中的反应器,以使其在浸入水,湿砂或干砂中时保持亚临界,无论它们没有或较小的损坏或造成的损坏或较小的损坏(如发射或冷却剂损坏),或者是重大的损坏(反射杆,并且缺少对照杆)。 然而,在最严重的事故场景中,具有控制杆系统的反应器不可避免地会变得超临界,在这种情况下,控制杆缺失而反射器中没有任何损坏[1]。hyun chul lee lee简介航天器的电源系统在深空探索中起关键作用,也是唯一适用于木星以外或太阳系以外的航天器探索的唯一适用的选择[1]。自SNAP-10A于1965年推出以来,已经开发了许多用于航天器电源的小裂变反应堆。最近,美国(美国)国家航空航天局(NASA)和洛斯阿拉莫斯国家实验室(LANL)进行了深空任务,其中具有高度富集的铀(HEU)被用作燃料[2]。在韩国原子能研究所(KAERI)中研究了一个小型热反应器,该反应堆正在研究深空探测器[1]。对照杆(CR)系统被采用是研究中的反应器的反应性控制系统,并且设计了研究中的反应器,以使其在浸入水,湿砂或干砂中时保持亚临界,无论它们没有或较小的损坏或造成的损坏或较小的损坏(如发射或冷却剂损坏),或者是重大的损坏(反射杆,并且缺少对照杆)。然而,在最严重的事故场景中,具有控制杆系统的反应器不可避免地会变得超临界,在这种情况下,控制杆缺失而反射器中没有任何损坏[1]。Besides the control rod system which has been widely used for nuclear reactors since Chicago Pile-1, many concepts of reactivity control system for space reactor such as the control drum (CD) system [3], the sliding reflector or the control shutter concept [4], and the hinged reflector or the petals reflector concept adopted in SP-100 space reactor [5] have been proposed and studied widely [6,7,8,9,10].如上所述,发射事故期间的控制杆损失不可避免地会导致核心反应性的提高,而控制鼓的损失也会增加。对于带有滑动反射器或铰链反射器系统的反应器的情况,相反,反应性控制系统(反射器本身)的丢失会导致核心反应性的降低。但是,当反应器对反应器产生外部影响时,反射器可能会意外移动到其操作位置。例如,由于反射器或核心的惯性,地面上的崩溃可以将滑动或铰链反射器移至其操作位置。使用上述任何反应性控制系统,反应器