肯尼迪航天中心学习学院于 9 月 16 日举行了剪彩仪式,正式开放,为培训活动提供了一个具有许多特色的中心场所。人力资源开发办公室主任 Jim Norman 欢迎 70 多名 NASA 和承包商员工以及其他受邀嘉宾参加这一期待已久的活动。中心主任 Jim Kennedy 表示,他很荣幸为肯尼迪航天中心开设另一座新设施。“学习是一种生活方式,我希望肯尼迪航天中心永远是一个学习的地方,”他说。这座占地 6,600 平方英尺的新设施位于总部大楼南面,包括一个开放式会议区、露天剧场、员工办公室和一个设备齐全的厨房。该设施包括视频电话会议和远程学习支持,可同时容纳大约 50 人。“不同的人以不同的方式学习,”人力资源办公室主任 Pat Simpkins 说。“许多学习都是非正式的。这个设施旨在促进这种学习方式。”更新的网络通信将增强教师可用的资源类型
6.3 带有私人电视选项的私人 A/G 通信............................................................................................. 6.3-1 6.4 CAPCOM 电话通信............................................................................................. 6.4-1 6.5 数字语音对讲系统 (DVIS) 改进型冷启动............................................................................................. 6.5-1 6.6 语音播放(已删除).................................................................................... 6.6-1 6.7 KSC 语音通信控制(已删除).................................................................... 6.7-1 6.8 PABX 拦截......................................................................................................... 6.8-1 6.9 语音通信标准......................................................................................................... 6.9-1 6.10 TDRS/GN 切换............................................................................................. 6.10-1 6.11 TDRS早期移交................................................................................ 6.11-1 6.12 在高倾斜度进入肯尼迪航天中心期间的 TDRS 移交..................................................................................... 6.12-1 6.13 NASCOM 优先事项............................................................................... 6.13-1 6.14 空对地语音管理....................................................................................... 6.14-1 6.15 地面语音 - 应急管理......................................................................................... 6.15-1 6.16 接入地面语音上行链路.................................................................................... 6.16-1 6.17 任务控制中心-莫斯科/任务控制中心-休斯顿(MCC-M/MCC-H)地面通信 - 应急管理......................................................... 6.17-1 6.18发射前 A/G 语音检查...................................................................................... 6.18-1 6.19 保留................................................................................................... 6.19-1 6.20 保留................................................................................................... 6.20-1 6.21 应急着陆点(CLS)通信......................................................................................................... 6.21-1 6.22 远程操作 - 将远程飞行控制器连接到数字语音对讲系统......................................................... 6.22-1
(AFRL)空军研究实验室(BMS)电池管理系统(BOL)生命开始(CFRPS)复合纤维增强板(CIGS)CU(CIGS)CU(CIGS)SE2 SE2(ga)SE2(cots)商业 - 商业 - 货架(EOL)遗产(EOL)终端(EPS)终端(EPS)电力系统(ESA)电气系统(ESA)欧洲空间(ESA)欧洲空间(GAN)nitride(GAN)nitriide(ka)niTriede(GRC)NASNY ny nyy n. (Li-ion) Lithium-ion (LiCF x ) Lithium carbon monofluoride (LiPo) Lithium polymer (LiSO 2 ) Lithium sulfur dioxide (LiSOCl 2 ) Lithium thionyl chloride (MIL) Military (QML) Qualified Manufacturers List (NiCd) Nickel-cadmium (NiH 2 ) Nickel-hydrogen (OPV) Organic Photovoltaic (奥斯卡)基于碳材料(PCB)印刷电路板(PEASSS)的光传感器(sp)特定功率(交换)尺寸,重量和功率(TPV)热伏oltaic(TR)热辐射(TRL)技术准备水平(WH kg -1)瓦特小时每公斤瓦特小时
(AFRL)空军研究实验室(BMS)电池管理系统(BOL)生命开始(CFRPS)复合纤维增强板(CIGS)CU(CIGS)CU(CIGS)SE2 SE2(ga)SE2(cots)商业 - 商业 - 货架(EOL)遗产(EOL)终端(EPS)终端(EPS)电力系统(ESA)电气系统(ESA)欧洲空间(ESA)欧洲空间(GAN)nitride(GAN)nitriide(ka)niTriede(GRC)NASNY ny nyy n. (Li-ion) Lithium-ion (LiCF x ) Lithium carbon monofluoride (LiPo) Lithium polymer (LiSO 2 ) Lithium sulfur dioxide (LiSOCl 2 ) Lithium thionyl chloride (MIL) Military (QML) Qualified Manufacturers List (NiCd) Nickel-cadmium (NiH 2 ) Nickel-hydrogen (OPV) Organic Photovoltaic (奥斯卡)基于碳材料(PCB)印刷电路板(PEASSS)的光传感器(sp)特定功率(交换)尺寸,重量和功率(TPV)热伏oltaic(TR)热辐射(TRL)技术准备水平(WH kg -1)瓦特小时每公斤瓦特小时
作为 NASA 探索地面系统计划的主要承包商,Jacobs 负责升级和维护肯尼迪航天中心的发射系统和设施,以支持 Artemis 计划。对于 Artemis I 任务,Jacobs 提供了完整的飞行硬件处理、集成、测试和发射以及猎户座回收操作。在这次历史性任务中,猎户座载人舱创纪录地飞行了 140 万英里,拍摄了令人惊叹的地球和月球图像,然后成功溅落在加利福尼亚海岸。Jacobs 支持猎户座隔热罩和降落伞系统的开发和测试,这对成功着陆起到了重要作用。Jacobs 是负责在溅落后回收猎户座并将其运回肯尼迪航天中心进行评估和拆卸的团队的一员。在过去的 10 年里,Jacobs 团队帮助 NASA 重新设计、现代化和升级肯尼迪的地面设施和设备。目前,该公司正在增强系统以支持增加 Artemis II 任务的机组人员,包括对 600 万磅重的履带式运输车、380 英尺高的移动发射器和具有历史意义的 39B 发射台进行升级。未来的任务将使人类重返月球表面——包括第一位女性和有色人种。除了支持 NASA,Jacobs 团队还为各种商业太空公司提供技术和工程支持,包括洛克希德马丁、波音、诺斯罗普格鲁曼和内华达山脉
太空运输系统,航天飞机运载机 HAER 编号 TX-116-L 第 5 页 此外,在记录时,有两个主要特征将两个 SCA 区分开来。第一个是飞机两侧靠近轨道器前支撑支柱的上层甲板窗户的数量;NASA 911 每侧有五个窗户,而 NASA 905 只有两个。第二个区别是 2012 年应用于 NASA 905 的乙烯基贴花。在 NASA 905 的每一侧、前门后部和主甲板窗户上方,有一系列图像,描绘了飞机搭载每个轨道器(企业号、哥伦比亚号、挑战者号、发现号、亚特兰蒂斯号和奋进号)和幻影鳐的次数;这些是 2012 年 3 月应用的。第二组贴花位于 NASA 905 两侧驾驶舱窗户的正下方;上面刻有参加轨道器最后一次渡轮飞行的 SCA 飞行员和飞行工程师的名字。14 历史:最初,航天飞机轨道器设计有吸气式发动机,用于将飞行器送入轨道和从太空返回;此外,发动机还可用于将轨道器从一个位置运送到另一个位置。然而,研究表明,这些发动机在设计上导致了重量问题。因此,工程师们开始研究将轨道器从潜在的远程着陆点运送到肯尼迪航天中心的替代方式。15 1973 年,NASA 正在考虑使用洛克希德制造的 C-5A 货机 16 和波音 747“巨型喷气式飞机”作为运送轨道器的潜在交通工具。1973 年 8 月,NASA 的 DFRC 授予波音公司一份价值 56,000 美元的合同,以研究使用 747 运送轨道器的可行性。该合同是波音公司提交的一份未经请求的提案的结果。这项为期 60 天的研究旨在确定此类运载机的作战要求、性能、成本、时间表和初步系统设计。17 1973 年 10 月,洛克希德公司获得了一份合同,内容包括模拟 C-5A 作为渡运机使用的风洞试验。轨道器比例模型的试验 14 Alan Brown,“NASA 905 上的新徽标描绘了渡运飞行历史”,2012 年 4 月 5 日,http://www.nasa.gov/centers/dryden/Features/sca_905_logos.html。此时,NASA 911 已退役。 Brewer,访谈,第 15 页。15 William G. Register,《747 空运航天飞机轨道器》,载于第十二届太空大会论文集,佛罗里达州可可海滩,1975 年 4 月 9-11 日(卡纳维拉尔技术协会理事会,1975 年),第 1-1 至 1-3 页。1972 年 4 月 14 日,肯尼迪航天中心被选为航天飞机的主要发射场。Jenkins,《航天飞机》,第 155 页。早在 1969 年 10 月,人们就认为肯尼迪航天中心也将成为航天飞机的主要着陆场。“12 寻求航天飞机控制系统研究”,Marshall Star,1969 年 10 月 22 日,第 4 页。16 C-5A 的原始版本由洛克希德公司于 1968 年至 1973 年间制造。这种大型军用运输机具有强大的空运能力,主要由美国空军使用。17 “波音获得穿梭渡轮合同”,X-Press,1973 年 8 月 3 日,第 2 页。
未来在太空中的作物生产将需要强大的监测技术,以优化农作物产量,减少废物并生成自动化植物生长设计的数据。成像被认为是测量植物健康的工具,但是尚未在太空飞行中测试室内作物的成像系统。幸运的是,已经捕获了ISS上高级植物栖息地(APH)内生长的作物植物的RGB图像。在基于地面的研究中,肯尼迪航天中心(NASA,KSC)正在与美国农业部(USDA ARS)合作,以开发一种用于监测室内农作物植物健康状况的成像系统。在一项研究中,我们在14天的时间内将干旱应力应用于“龙龙”生菜植物,并以24小时的增量捕获了RGB图像。图像,并应用差异指数,可以使用图像来检测生菜中的干旱应激。然后将此差异指数应用于APH地面单元内收集的RGB图像,以在不同的底物水分条件下进行飞行前的实验,并在不同的底物水分条件下生长出“超湿”生菜,结果表明,RGB摄像机能够检测到太空飞行植物生长硬件内的干旱应力。这些结果表明,已经部署到太空的RGB摄像机可能会提供有价值的信息,以监视外星环境中的植物生产。这项研究得到了NASA的太空生物学计划的支持。
在我们开始新的一年的时候,我想借此机会反思一下 2006 年发生的两起非常严重的事故。两起事故都涉及坠落,其中一起还导致了人员死亡。由于肯尼迪航天中心的工作性质,你们中的很多人都需要在高处工作。这不仅包括建筑工作,还包括公用设施维护、塔楼工作、涉及平台和脚手架的航天飞机和有效载荷处理活动,以及肯尼迪航天中心工人经常执行的许多其他日常活动。第一起事故发生在 2006 年 3 月 17 日,一名工人从肯尼迪航天中心工业区 1 号供应仓库的屋顶头朝下坠落。他从大约 17 英尺高的地方摔落在混凝土装卸码头上。救援人员几分钟后赶到事故现场,随后该工人被空运到奥兰多地区医疗中心。不幸的是,他于当晚因伤势过重去世。这起事件最令人不安的是,坠落距离并不远,大约相当于从一层楼的屋顶上掉下来,但却导致一人死亡。10 月 23 日,发生了第二起同样严重后果的事件,一名钢铁工人从固定梯子上摔下约 12 英尺,落到车辆装配大楼高架 4 号楼 41 层下方的一个小平台上。在坠落过程中,该人撞到了另一名钢铁工人,将他从较低的平台上撞倒
致谢 本出版物的主要作者是: HOWARD T. CASTRUP — 是 Integrated Sciences Group (ISG) 的负责人,该公司致力于设计和开发计算机托管的科学分析和高级决策支持系统。Castrup 是校准间隔分析领域的领导者,他在测试/校准决策分析方面进行了开创性的研究。他是统计过程控制方法的作者,该方法允许在不使用更高级别的比对标准的情况下确定精密测量和测试设备的公差概率。他在加州大学洛杉矶分校获得工程学学士和博士学位,主攻固态电子学。WOODWARD G. EICKE — 是电气测量、标准和仪器领域的咨询计量学家。他在美国国家标准局 (现为 NIST) 工作了 35 年,涉及精密电气测量、电气标准、仪器仪表、自动化、测量保证和其他相关领域。Eicke 是二十多篇发表在科学和技术期刊上的论文的作者,并曾在众多专业协会和 NBS 委员会任职,参与标准编写。他就读于乔治华盛顿大学,获得工程学学士和硕士学位。JERRY L. HAYES — 是工程咨询公司 Hayes Technology 的负责人。他为多家航空航天公司和国防部提供计量和校准计划咨询服务。他曾担任海军计量工程中心的技术总监,并为全海军计划制定政策和目标。他撰写了许多关于校准和测量控制的论文,以确保校准计划和测试的质量。Hayes 曾获得过同行授予的许多奖项和荣誉。他获得了加州大学伯克利分校机械工程学士学位。JAMES L. TAYLOR — 在计算机数据采集系统项目的设计、分析和管理方面拥有二十多年的经验。他负责开展研究和开发概念设计,以及为工业和国防部进行系统设计。Taylor 发表了关于计算机数据采集系统设计技术和测量误差基础的教材,并为众多航空航天和工业公司教授测量技术和系统设计课程。他获得了应用数学和物理学学士学位以及应用数学和工程硕士学位。我们特别感谢 Robert B. Abernethy 博士提供的个人参考资料,并非常感谢以下人员的建设性贡献和批评性评论:NASA 计量和校准工作组 Robert Burdine—NASA HQ (Code Q)/MSFC Fred Kern—LaRC Troy J. Estes—WSTF Kristen Riley—KSC Mark A. Hutchinson—LaRC Herman Watts(Tom Weiss)—Stennis(Sverdrup)