该项目首次采用氧化物分子束外延 (MBE) 来生长 KTaO ₃ (KTO) 薄膜。早期生长使用 (100) SrTiO ₃ (STO) 基材进行,以尝试微调生长参数。此外,还使用了通过炉加热的 TaO ₂ 亚氧化物源和通过电子束加热的 Ta 源,并分析和比较了它们各自的薄膜。通过反射高能电子衍射 (RHEED) 进行原位监测,以及通过原子力显微镜 (AFM) 和 X 射线衍射 (XRD) 进行生长后表征,可以在整个项目中进行表面和晶体分析。来自亚氧化物和电子束加热 Ta 源的薄膜显示出相似的晶体质量,然而,在亚氧化物生长的 KTO 表面上发现更高浓度的氧化物杂质。成功生长 KTO 后,使用稀土钪酸盐 (110) 衬底 GdScO ₃ (GSO) 和 DyScO ₃ (DSO),因为它们与 KTO 的“立方体对伪立方体”界面将分别产生理论上 0.55% 和 0.93% 的压缩应变。通过逆空间映射 (RSM),GSO 衬底在 KTO 薄膜上显示出相称的应变,而 DSO 衬底仅显示部分应变。总体而言,使用 MBE 生长 KTO 可实现高结晶质量,为 KTO 薄膜合成和铁电 KTO 分析指明了光明的未来。
致指挥官:官员:SCOTT W. MCLELLAN 上校,AD 参谋长 ROCKSON M. ROSARIO 首席,出版物和记录管理历史。本出版物是一次重大修订。适用性。本规定适用于分配给、隶属于、受其作战控制或直接支持第八集团军 (8A) 的所有军事指挥和活动。本规定还适用于在韩国战区 (KTO) 内进行训练行动的临时执勤的所有陆军人员。KTO 内的所有其他陆军人员必须根据其他指挥协议遵守本规定的指导。提议者和例外权力。本规定的提议者是第八集团军指挥安全办公室。提议者有权批准符合控制法律和法规的本法规例外或豁免。补充。未经第八军指挥安全办公室(单位#15236,APO AP 96271-5236)事先批准,禁止补充本法规以及建立指挥和地方表格。偏差。偏离本法规强制性规定的行为需要豁免,并有充分理由,并将提交给指挥官,8A,指挥安全办公室,单位#15236,APO AP 96271-5236。临时变更。除非助理副官同意,否则对本法规的临时变更不正式
《计算机大百科全书》是一部关于现代计算机科学知识的完整纲要。对于任何想要了解电子和信息技术动态发展的人来说,这是一本必读之书。描述与现代计算机科学相关的所有问题;介绍了它的历史和发展趋势。包含有关其产品彻底改变了现代世界的公司的信息,以及技术、硬件和软件的描述。每个人,无论其知识水平如何,都可以在其中找到对当今 IT 各个分支中他们感兴趣的术语的全面解释。
1。犹他州犹他州盐湖城肿瘤科学系。2。犹他州盐湖城犹他大学亨斯曼癌症研究所。3。德克萨斯大学医学博士安德森癌症中心遗传学系,德克萨斯州休斯敦4。Deciphera Pharmaceuticals LLC,堪萨斯州劳伦斯市643 ST。5犹他州盐湖城病理学系。 6。 犹他州盐湖城医学肿瘤学部内科学系。 7。 犹他州盐湖城皮肤科系皮肤科系。 *通讯作者马丁·麦克马洪(Martin McMahon),博士 俄罗斯大学,犹他大学,2000年希望圈,HCI-RS-2725盐湖城,盐湖城,UT 84112(801)213 5790电子邮件:martin.mcmahon@hci.utah.utah.utah.utah.utah.uta.edu作者贡献:PCG,PCG,PCG,MM,MM,MM,MB,BDS和DLF设计了实验者; PCG和MM分析了数据; PCG执行了大多数实验。 KTO协助免疫印迹;太太进行了体外协同作用测定; SSB和MTS协助体内动物研究; ELS进行了组织病理学分析; PCG和MM写了手稿;所有作者均审查并编辑了手稿。 相互竞争的利益声明:此处描述的研究得到了犹他大学和Deciphera Pharmaceuticals,LLC的赞助研究协议的支持,并授予MM和CGK。 关键字:KRAS,ULK,LKB1,TP53,自噬,KRAS G12C的基因工程小鼠模型 - 驱动的肺癌5犹他州盐湖城病理学系。6。犹他州盐湖城医学肿瘤学部内科学系。7。犹他州盐湖城皮肤科系皮肤科系。*通讯作者马丁·麦克马洪(Martin McMahon),博士俄罗斯大学,犹他大学,2000年希望圈,HCI-RS-2725盐湖城,盐湖城,UT 84112(801)213 5790电子邮件:martin.mcmahon@hci.utah.utah.utah.utah.utah.uta.edu作者贡献:PCG,PCG,PCG,MM,MM,MM,MB,BDS和DLF设计了实验者; PCG和MM分析了数据; PCG执行了大多数实验。 KTO协助免疫印迹;太太进行了体外协同作用测定; SSB和MTS协助体内动物研究; ELS进行了组织病理学分析; PCG和MM写了手稿;所有作者均审查并编辑了手稿。相互竞争的利益声明:此处描述的研究得到了犹他大学和Deciphera Pharmaceuticals,LLC的赞助研究协议的支持,并授予MM和CGK。关键字:KRAS,ULK,LKB1,TP53,自噬,KRAS G12C的基因工程小鼠模型 - 驱动的肺癌
ALD - 农业和牲畜司CBD - 生物多样性作物代理公约 - 太平洋ECD的区域组织理事会 - 环境与保护局EEZ - EEZ-EEZ - 独家经济区 - 环境影响区 - 环境影响评估ENSO - El Nino/La Nina/La Nina/La Nina/La Nina/La Nina Southern Southern Essos Eyc- Eyc-Eyf eCOS ECOS GEF - 全球环境社会 - 全球范围 - 全球范围 - 全球范围 - 全球范围 - 全球范围 - 全球范围 - 全球范围 - 全球范围ISM KENS ISM KENG - 全球范围 - ISM KENG - 全球范围 - – Kiribati Association of Non Governmental Organization KAP II – Kiribati Adaptation Project Phase II KDP – Kiribati Development Plan KOIL- Kiribati Oil Company Limited KPA – Key Policy Area KTO – Kiribati Tourism Office MCTTD – Ministry of Communication, Transport and Tourism Development MDG – Millennium Development Goals MELAD – Ministry of Environment, Lands and Agricultural Division MEA – Multi-lateral Environment Agreement MFMRD – Ministry of Fisheries and Marine Resource Development MOP – Ministerial Operational Plan MPA – Marine Protected Areas NBSAP – National Biodiversity Strategy Action Plan NGOs – Non-governmental Organization NDS – National Development Strategy OUV – Outstanding Universal Value PIPA – Phoenix Islands Protected Area POWPA – Programme of Work on Protected Areas SOPAC- South Pacific Applied Geosciences Commission SPREP – Secretariat for the Pacific区域计划UNEP - 联合国环境计划WHC - 世界遗产委员会
最近,由于其在未来一代的Spintronic设备中的应用,因此在电子系统中的动量依赖性旋转带来了“ Rashba效应”。[1,2] RASHBA效应不仅重要,这不仅是因为它具有巨大的技术应用潜力,而且还因为它是两个自旋带的线性分散关系,因此它是新出现的物理特性的狩猎场。[3]在这项工作中,我们介绍了由于rashba旋带分裂而引起的两个绝缘钙岩氧化物界面上产生的新兴现象。在我们的第一部作品中,我们即兴创造了通过将KTAO3(KTO)与另一个绝缘体(LVO3(LVO))并排并置的新颖导电界面。[4]该异质界面表现出强的自旋轨道耦合,这是迄今为止报道的钙钛矿氧化物异质结构中最高的。还发现该系统通过观察平面霍尔效应(PHE)和异常的平面内磁性(AMR)来显示拓扑性手性异常的特征,类似于观察到的拓扑系统。[5]此外,在磁性耐药性中也观察到了令人惊讶的量子振荡。已经观察到了Landau指数的非线性依赖性作为所施加磁场倒数的函数。在下一项工作中,我们显示了自旋偏光透明界面的实现。在室温下实现材料中高度自旋两极分化的追求是材料物理的中心主题之一。此外,在可见光的整个范围内,该界面似乎几乎是透明的。我们报告了两个绝缘钙岩氧化物的导电界面,即LaFeo3(LFO)和SRTIO3(STO)(STO),这些氧化物证明了自旋极化的签名,即负极磁化率,即在150 K以上的异常霍尔电阻性,甚至超过150 k,甚至达到室温。然而,同一系统在低于150 K的温度下显示出正磁性和正常的霍尔效应。在高温下,贝瑞相位的磁性接近性和拓扑作用可以在现象学上被理解为从高温下的热波动引起的系统中的非线性自旋布置的拓扑作用。我们的观察不仅是基本科学的兴趣,而且也被视为朝着“室温透明氧化物旋转学”迈出的一步。